随着互联网的发展,社交网络中积累了大量的医疗健康领域的文本数据。该文利用基于信息熵的方法,从健康社交网络中的用药者评论数据中识别药物的潜在不良反应;同时,对于潜在药物不良反应,该文提出了基于Word2vec和Skip-gram模型的蛋白质关联紧密度函数,尽最大努力发现药物引起其“潜在”不良反应的证据链。实验证明,该方法用来寻求潜在药物不良反应证据链是有效的。
Abstract
With the development of the Internet, social networks have accumulated large amounts of text data about health care. This paper presents an information entropy based method to recognize potential adverse drug reactions from user comments in health related social networks. Meanwhile, to recognize the potential adverse drug reactions, this paper proposes a protein association function based on Word2vec and Skip-gram. Following this functions, this paper tries to detect the evidences between drugs and their potential adverse drug reactions. The results show that this method is promising in providing evidence chain for potential adverse drug reactions.
关键词
社交网络 /
药物不良反应 /
信息熵 /
Word2vec /
Skip-gram
{{custom_keyword}} /
Key words
social networks /
adverse drug reactions /
information entropy /
Word2vec /
Skip-gram
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Leaman R, Wojtulewicz L, Sullivan R, et al. Towards internet-age pharmacovigilance:extracting adverse drug reactions from user posts to health-related social networks[C]//Proceedings of the 2010 workshop on biomedical natural language processing. Association for Computational Linguistics, 2010:117-125.
[2] Nikfarjam A, Gonzalez G H. Pattern mining for extraction of mentions of adverse drug reactions from user comments[C]// Proceedings of AMIA Annual Symposium American Medical Informatics Association, 2011:1019.
[3] Yates A, Goharian N. ADRTrace:detecting expected and unexpected adverse drug reactions from user reviews on social media sites[C]//Proceedings of European Conference on Information Retrieval. Springer, Berlin, Heidelberg, 2013:816-819.
[4] Bian J, Topaloglu U, Yu F. Towards large-scale twitter mining for drug-related adverse events[C]//Proceedings of the 2012 international workshop on Smart health and wellbeing. ACM, 2012:25-32.
[5] Mikolov T, Sutskever I, Chen K, et al. Distributed representations of words and phrases and their compositionality[C]//Proceedings of advances in neural information processing systems. 2013:3111-3119.
[6] Law V, Knox C, Djoumbou Y, et al. DrugBank 4. 0:shedding new light on drug metabolism[J]. Nucleic Acids Research. 2014, 42(D1):D1091-D1097.
[7] Knox C, Law V, Jewison T, et al. DrugBank 3. 0:a comprehensive resource for ‘omics’ research on drugs[J]. Nucleic Acids Research. 2011, 39(suppl 1):D1035-D1041.
[8] Wishart D S, Knox C, Guo A C, et al. DrugBank:a knowledgebase for drugs, drug actions and drug targets[J]. Nucleic Acids Research. 2008, 36(suppl 1):D901-D906.
[9] Wishart D S, Knox C, Guo A C, et al. DrugBank:a comprehensive resource for in silico drug discovery and exploration[J]. Nucleic Acids Research. 2006, 34(suppl 1):D668-D672.
[10] Kilicoglu H, Fiszman M, Rodriguez A, et al. Semantic MEDLINE:a web application for managing the results of PubMed Searches[C]//Proceedings of the 3rd international symposium for semantic mining in biomedicine. 2008:69-76.
[11] Rindflesch T C, Kilicoglu H, Fiszman M, et al. Semantic MEDLINE:An advanced information management application for biomedicine[J]. Information Services and Use. 2011, 31(1):15-21.
[12] Kilicoglu H, Shin D, Fiszman M, et al. SemMedDB:a PubMed-scale repository of biomedical semantic predications[J]. Bioinformatics. 2012, 28(23):3158-3160.
[13] Kuhn M, Campillos M, Letunic I, et al. A side effect resource to capture phenotypic effects of drugs[J]. Molecular Systems Biology, 2010, 6(1).
[14] 任禾, 曾隽芳. 一种基于信息熵的中文高频词抽取算法[J]. 中文信息学报, 2006, 20(5):40-43.
[15] 闫兴龙, 刘奕群, 马少平, 等. 面向浏览推荐的网页关键词提取[J]. 智能系统学报, 2012, 07(5):398-403.
[16] Rindflesch T C, Fiszman M. The interaction of domain knowledge and linguistic structure in natural language processing:interpreting hypernymic propositions in biomedical text[J]. Journal of Biomedical Informatics, 2003, 36(6):462-477.
[17] Gingrich J A. Mutational analysis of the serotonergic system:recent findings using knockout mice[J]. Current Drug Targets-CNS & Neurological Disorders, 2002, 1(5):449-465.
[18] Goldman D, Oroszi G, O’Malley S, et al. COMBINE genetics study:the pharmacogenetics of alcoholism treatment response:genes and mechanisms[J]. Journal of Studies on Alcohol and Drugs. 2005(15):56.
[19] Shishkina G T, Kalinina T S, Dygalo N N. Attenuation of α2A-adrenergic receptor expression in neonatal rat brain by RNA interference or antisense oligonucleotide reduced anxiety in adulthood[J]. Neuroscience, 2004, 129(3):521-528.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金(61572102,61632011,61772103);中央高校基本科研业务费(DUT16ZD216)
{{custom_fund}}