基于用户隐性反馈行为的下一个购物篮推荐

李裕礞,练绪宝,徐博,王健,林鸿飞

PDF(2569 KB)
PDF(2569 KB)
中文信息学报 ›› 2017, Vol. 31 ›› Issue (5) : 215-222.
情感分析与社会计算

基于用户隐性反馈行为的下一个购物篮推荐

  • 李裕礞,练绪宝,徐博,王健,林鸿飞
作者信息 +

Next Basket Recommendation Based on Implicit User Feedback

  • LI Yumeng, LIAN Xubao, XU Bo, WANG Jian, LIN Hongfei
Author information +
History +

摘要

下一个购物篮推荐是当前电子商务领域中极其重要的一项任务,传统的下一个购物篮推荐方法主要分为时序推荐模型和总体推荐模型。这些方法对点击、收藏、加入购物车等用户的隐性反馈行为利用得不够,并且没有考虑用户行为偏好的时间敏感性。该文提出了一种基于用户隐性反馈行为的下一个购物篮推荐方法,将用户行为按照一定的时间窗口进行划分,对于每个窗口从多个维度抽取用户对商品的时序偏好特征,运用深度学习领域的卷积神经网络模型进行分类器训练。在真实数据集中的实验结果表明,与传统的线性模型和树模型等分类器相比,该文提出的卷积神经网络框架具有较强的特征萃取能力和泛化能力,提高了推荐系统的用户满意度。

Abstract

“Next Basket” recommendation is a crucial task in E-commerce field. Traditional algorithms can be divided into sequential recommender and general recommender, both of which neglect the impact of implicit feedback behavior and time sensitivity of user's preferences. This paper proposes a “next basket” recommendation framework based on implicit user feedback. We divide the user behaviors into several time windows according to the timestamp of these behaviors, and model the user preference in different dimensions for each window. Then we utilize the convolutional neural network to train a classifier. Compared to traditional linear models and tree models on a real dataset, the proposed model improves the user satisfaction with the recommender system.

关键词

下一个购物篮推荐 / 隐性反馈 / 时序行为 / 卷积神经网络

Key words

next basket recommendation / implicit feedback / sequential behavior / convolution neural network

引用本文

导出引用
李裕礞,练绪宝,徐博,王健,林鸿飞. 基于用户隐性反馈行为的下一个购物篮推荐. 中文信息学报. 2017, 31(5): 215-222
LI Yumeng, LIAN Xubao, XU Bo, WANG Jian, LIN Hongfei. Next Basket Recommendation Based on Implicit User Feedback. Journal of Chinese Information Processing. 2017, 31(5): 215-222

参考文献

[1] Ricci F, Rokach L, Shapira B. Introduction to recommender systems handbook[M]. Springer US, 2011:147-184.
[2] Gatzioura A, Sanchezmarre M. A case-based recommendation approach for market basket data[J]. Intelligent Systems IEEE, 2015, 30(1):20-27.
[3] Lee J S, Jun C H, Lee J, et al. Classification-based collaborative filtering using market basket data[J]. Expert Systems with Applications, 2005, 29(3):700-704.
[4] Wang P, Guo J, Lan Y. Modeling retail transaction data for personalized shopping recommendation[C]//Proceedings of ACM International Conference on Conference on Information and Knowledge Management. ACM, 2014:1979-1982.
[5] Rendle S, Freudenthaler C, Schmidt-Thieme L. Factorizing personalized Markov chains for next-basket recommendation[C]//Proccedings of International Conference on World Wide Web, WWW 2010, Raleigh, North Carolina, USA, 2010:811-820.
[6] Bengio Y. Learning deep architectures for AI[J]. Foundations & Trends in Machine Learning, 2009, 2(1):1-127.
[7] Kalchbrenner N, Grefenstette E, Blunsom P. A convolutional neural network for modelling sentences[J]. arXiv preprint Arxiv, 1404. 2188, 2014.
[8] 练绪宝. 基于排序学习和卷积神经网络的推荐算法研究[D]. 大连理工大学硕士学位论文, 2016.
[9] Chand C, Thakkar A, Ganatra A. Sequential pattern mining:survey and current research challenges[J]. International Journal of Soft Computing & Engineering, 2012, 2(1):185-193.
[10] Zimdars A, Chickering D M, Meek C. Using temporal data for making recommendations[C]//Proceedings of the 17th conference on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc. , 2001:580-588.
[11] Mobasher B, Dai H, Luo T, et al. Using sequential and non-sequential patterns in predictive web usage mining tasks[C]//Proceedings of the 2002 IEEE International Conference on Data Mining. IEEE, 2002:669-672.
[12] Chen S, Moore J L, Turnbull D, et al. Playlist prediction via metric embedding[C]//Proceedings of the 18th ACM Knowledge Discovery and Data Mining. 2012:714-722.
[13] Wang P, Guo J, Lan Y, et al. Learning hierarchical representation model for nextbasket recommendation[C]//Proccedings of International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2015:403-412.
[14] Zeiler M D. ADADELTA:An adaptive learning rate method[J]. Computer Science, 2012.
[15] Hinton G E, Srivastava N, Krizhevsky A, et al. Improving neural networks by preventing co-adaptation of feature detectors[J]. Computer Science, 2012, 3(4):212-223.
[16] He H, Garcia E. Learning from imbalanced data[J]. IEEE Transactions on Knowledge & Data Engineering, 2008, 21(9):1263-1284.
[17] Dierckx G. Logistic regression model[J]. Encyclopedia of Actuarial Science, 2009, 39(2):261-291.
[18] Hearst M A, Dumais S T, Osman E, et al. Support vector machines[J]. IEEE Intelligent Systems, 1998, 13(4):18-28.
[19] Breiman L. Random forests[J]. Machine Learning, 2001, 45(1):5-32.
[20] Friedman J H. Greedy function approximation:a gradient boosting machine[J]. Annals of Statistics, 2000, 29(5):1189-1232.

基金

国家自然科学基金(61572102,61632011, 61562080);国家重点研发计划(2016YFB1001103)
PDF(2569 KB)

706

Accesses

0

Citation

Detail

段落导航
相关文章

/