基于字素分割的蒙古文手写识别研究

范道尔吉,高光来,武彗娟

PDF(2652 KB)
PDF(2652 KB)
中文信息学报 ›› 2017, Vol. 31 ›› Issue (5) : 74-80.
民族语言与周边语言信息处理

基于字素分割的蒙古文手写识别研究

  • 范道尔吉1,高光来1,武彗娟2
作者信息 +

Grapheme Segmentation Based Mongolian Handwriting Recognition

  • FAN Daoerji1, GAO Guanglai1, WU Huijuan2
Author information +
History +

摘要

隐马尔科夫模型(HMM)对序列数据有很强的建模能力,在语音和手写识别中都得到了广泛的应用。利用HMM研究蒙古文手写识别,首先需要解决的问题是手写文字的序列化。从蒙古文的构词和书写特点看,蒙古文由多个字素从上到下串联构成。选择字素集合和词的字素分割是手写识别的基础,也是影响识别效果的关键因素。该文根据蒙古文音节和编码知识确定了蒙古文字母集合,共包括1 171个字母。通过相关性处理、HMM排序筛选等手段得到长字素集合,共包括378个字素。对长字素经过人工分解,获得了50个短字素。最后利用两层映射给出了词转字素序列的算法。为了验证长短字素在手写识别中的效果,我们在HTK(hidden Markov model toolkit)环境下利用小规模字库实现了手写识别系统,实验结果表明短字素比长字素有更好的性能。文中给出的字素集合和词转字素序列的算法为后续基于HMM的蒙古文手写识别研究奠定了基础。

Abstract

Hidden Markov Models(HMM) has strong modeling capabilities for sequence data, and it is widely used in speech recognition and handwriting recognition task. HMM-based Mongolian handwriting recognizers require the data to be analyzed sequentially. According to Mongolian word formation and writing style, it is evident that a Mongolian word consists of grapheme seamless connected from top to down. The selection of grapheme and segmentation word to grapheme is a preliminary work for handwriting recognition with substantial effects on recognition accuracy. In this paper, according to knowledge of syllables and coding, we collect a Mongolian letters set of 1 171 letters. The long grapheme set which contain 378 grapheme is then extracted from letters set by correlation process and HMM based sorting method. The short grapheme set which contain 50 shapes is extracted from long grapheme set via decompose long grapheme by hands. We present an algorithm to decompose a word to grapheme by two layers mapping. Experimental results show that the short grapheme get better performance than long grapheme.

关键词

蒙古文 / 字素 / HMM / 手写识别

Key words

Mongolian / grapheme / HMM / handwriting recognition

引用本文

导出引用
范道尔吉,高光来,武彗娟. 基于字素分割的蒙古文手写识别研究. 中文信息学报. 2017, 31(5): 74-80
FAN Daoerji, GAO Guanglai, WU Huijuan. Grapheme Segmentation Based Mongolian Handwriting Recognition. Journal of Chinese Information Processing. 2017, 31(5): 74-80

参考文献

[1] 金连文, 钟卓耀, 杨钊, 等. 深度学习在手写汉字识别中的应用综述[J]. 自动化学报, 2016, 42(8):1125-1141.
[2] 吴伟. 联机手写蒙古文字识别技术的研究与实现[D]. 呼和浩特:内蒙古大学硕士学位论文, 2005.
[3] 白文荣. 联机手写蒙古文字识别技术的研究[D]. 呼和浩特:内蒙古大学硕士学位论文, 2007.
[4] 魏宏喜. 印刷体蒙古文字识别中关键技术的研究[D]. 呼和浩特:内蒙古大学硕士学位论文, 2006.
[5] Su T H, Zhang T W, Guan D J, et al. Off-line recognition of realistic Chinese handwriting using segmentation-free strategy[J]. Pattern Recognition, 2009, 42(1):167-182.
[6] El-Hajj R, Likforman-Sulem L, Mokbel C. Arabic handwriting recognition using baseline dependant features and hidden Markov modeling[C]//Proceedings of the Eighth International Conference on Document Analysis and Recognition, 2005:893-897.
[7] Al-Hajj R, Mokbel C, Likforman-Sulem L. Combination of HMM-based classifiers for the recognition of Arabic handwritten words[C]//Proceedings of the 12th International Conference on Document Analysis and Recognition. IEEE Computer Society, 2007:959-963.
[8] 马志强, 张泽广, 闫瑞, 等. 基于N-Gram模型的蒙古语文本语种识别算法的研究[J]. 中文信息学报, 2016, 30(1):133-139.
[9] Espana-Boquera S, Castro-Bleda M J, Gorbe-Moya J, et al. Improving offline handwritten text recognition with hybrid HMM/ANN Models[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2011, 33(4):767-79.
[10] Graves A, Schmidhuber J. Offline handwriting recognition with multidimensional recurrent neural networks[C]//Proceedings of the Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada, December. DBLP, 2012:545-552.
[11] 王震, 刘汇丹, 吴健. 新标准体系下蒙古文变形显现模型的设计与实现[J]. 中文信息学报, 2013, 27(1):108-114.
[12] Baldi P, Guyon G, Dror V, et al. Autoencoders, unsupervised learning, and deep architectures editor:I [J]. Journal of Machine Learning Research, 2012.

基金

内蒙古自治区自然科学基金(2016MS0603)
PDF(2652 KB)

772

Accesses

0

Citation

Detail

段落导航
相关文章

/