基于DCNNs-LSTM模型的维吾尔语突发事件识别研究

黎红,禹龙,田生伟,吐尔根·依布拉音,赵建国

PDF(4694 KB)
PDF(4694 KB)
中文信息学报 ›› 2018, Vol. 32 ›› Issue (6) : 52-61.
民族、跨境及周边语言信息处理

基于DCNNs-LSTM模型的维吾尔语突发事件识别研究

  • 黎红1,禹龙2,田生伟1,吐尔根·依布拉音3,赵建国4
作者信息 +

Uyghur Emergency Event Extracton Based on DCNNs-LSTM Model

  • LI Hong1, YU Long2, TIAN Shengwei1, Turgun Ibrahim3, ZHAO Jianguo4
Author information +
History +

摘要

结合对维吾尔语语言的特点分析,该文提出一种基于深度卷积神经网络(deep convolutional neural networks,DCNNs)联合长短期记忆网络(long-short term memory,LSTM)实现的维吾尔语文本突发事件识别方法。该方法提取突发事件包含六大特征块,并在特征集中引入富含词汇语义及上下文位置关系的Word Embedding,利用DCNNs对黏着性语言特征抽象化的学习能力抽取事件句中的高阶局部特征,以此作为LSTM网络的输入,利用其对于事件句中抽象含义序列关系的捕获特性获取全局特征,训练 Softmax分类器完成维吾尔语突发事件的识别任务。该方法在维吾尔语突发事件识别中的准确率达到80.60%,召回率81.39%,F值80.99%。实验结果表明,与不同层数的DCNNs和独立的LSTM网络相比,DCNNs-LSTM模型更具备挖掘隐含上下文深层语义信息的能力,对Word Embedding特征项的引入有效地提高了模型识别性能。

Abstract

A deep convolutional neural networks (DCNNs) combined with long-short term memory (LSTM) is proposed to extract the emergency events in Uyghur text. The method extracts six major feature blocks that are included in emergency events and employs word embedding. Using the DCNNs to extract the high level local features of the event sentence as the input,this method captures the sequence relations in the event sentence via LSTM,and train a Softmax classifier to accomplish the task. The accuracy of the method is 80.60%,the recall 81.39%,and the F value 80.99%.

关键词

维吾尔语 / 突发事件识别 / 深度卷积神经网络 / 长短期记忆网络 / word embedding

Key words

Uyghur / emergency recognition / deep convolutional neural network / long-short memory term / word embedding

引用本文

导出引用
黎红,禹龙,田生伟,吐尔根·依布拉音,赵建国. 基于DCNNs-LSTM模型的维吾尔语突发事件识别研究. 中文信息学报. 2018, 32(6): 52-61
LI Hong, YU Long, TIAN Shengwei, Turgun Ibrahim, ZHAO Jianguo. Uyghur Emergency Event Extracton Based on DCNNs-LSTM Model. Journal of Chinese Information Processing. 2018, 32(6): 52-61

参考文献

[1] Haddow G,Bullock J,Coppola D P.Introduction to Emergency management (Fifth Edition)[M].Wiley Subscription Services,Inc.A Wiley Company,2013.
[2] Bahdanau D,Cho K,Bengio Y.Neural machine translation by jointly learning to Align and Translate[J].Computer Science,2014:1-15.
[3] Tang D,Qin B,Liu T.Document modeling with gated recurrent neural network for sentiment classification[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing,2015:1422-1432.
[4] Mina M,Bansal M.End-to-end relation extraction using LSTMs on sequences and tree structures[C]//Proceedings of the 54th Annual Meeting of the Associaton for Computational Linguisties.2016:1105-1116.
[5] 孙晓,高飞,任福继,等.基于深度模型的社会新闻对用户情感影响挖掘[J].中文信息学报,2017,31(3):184-190.
[6] 孙晓,何家劲,任福继.基于多特征融合的混合神经网络模型讽刺语用判别[J].中文信息学报,2016,30(6):215-223.
[7] 李冬白,田生伟,禹龙,等.基于深度学习的维吾尔语人称代词指代消解[J].中文信息学报,2017,31(4):80-88.
[8] Lu W,Roth D.Automatic event extraction with structured preference modeling[C]//Proceedings of Meeting of the Association for Computational Linguistics:Long Papers.2013:835-844.
[9] Li Q,Ji H,Huang L.Joint Event extraction via structured prediction with global features[C]//Proceedings of Meeting of the Association for Computational Linguistics,2013:73-82.
[10] Liao S,Grishman R.Using document level cross-event Inference to improve event extraction[C]//Proceedings of Meeting of the Association for Computational Linguistics,2010:789-797.
[11] Ji H,Grishman R.Refining event extraction through cross-document inference[C]//Proceedings of Meeting of the Association for Computational Linguistics,2008:254-262.
[12] Thien Huu Nguyen,Ralph Grishman.Event detection and domain adaptation with convolutional neural networks[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing(Short Papers),2015:365-371.
[13] Chen Y,Xu L,Liu K,et al.Event extraction via dynamic Multi-pooling convolutional neural networks[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing.2015:167-176.
[14] Liu Y,Wei F,Li S,et al.A Dependency Based neural network for relation classification[J].Computer Science,2015:285-290.
[15] Neubauer C.Shape,position and size invariant visual pattern recognition based on principles of neocognitron and perceptron[OL].1992.https://www.mysciencework.com.
[16] Graves A.Generating sequences with recurrent neural networks[J].Computer Science,2013:1-43.
[17] Mikolov T,Sutskever I,Chen K,et al.Distributed representations of words and phrases and their compositionality[J].Advances in Neural Information Processing Systems,2013(26):3111-3119.

基金

国家自然科学基金(61662074,61563051,61262064,61331011);新疆维吾尔自治区科技人才培养项目(QN2016YX005)
PDF(4694 KB)

707

Accesses

0

Citation

Detail

段落导航
相关文章

/