面向作文自动评分的优美句识别

付瑞吉,王栋,王士进,胡国平,刘挺

PDF(3295 KB)
PDF(3295 KB)
中文信息学报 ›› 2018, Vol. 32 ›› Issue (6) : 88-97.
信息抽取与文本挖掘

面向作文自动评分的优美句识别

  • 付瑞吉1,2,王栋1,2,王士进1,2,胡国平1,2,刘挺2,3
作者信息 +

Elegart Sentence Recognition for Automated Essay Scoring

  • FU Ruiji1,2, WANG Dong1,2, WANG Shijin1,2, HU Guoping1,2, LIU Ting2,3
Author information +
History +

摘要

语言优美是学生写作能力中重要的一部分。该文提出一个面向作文自动评分的作文优美句识别任务,主要识别中学生中文作文中的优美句。相比传统文本分类任务,优美句识别更加难以用特征工程的方式解决。因此,该文提出一种基于卷积神经网络(CNN)和双向长短时记忆(BiLSTM)网络的混合神经网络结构进行优美句识别,并和CNN、BiLSTM网络进行了对比。实验证明,混合神经网络的准确率最高,达到89.23%,F1值与BiLSTM相当,达到75.39%。此外,该文将优美句子特征用于作文自动评分任务,可使计算机评分和人工评分的大分差比例下降21.41%。

Abstract

This paper proposs the task of elegant sentence recognition in Chinese essays of high school students for Automated Essay Scoring (AES). To deal withthis task clellenging the classical text classification plus feature engineering,this paper presents a deep neural network combining Convolutional Neural Network (CNN) and Bi-directional Long Short-Term Memory (BiLSTM) networks to recognize grace sentences. The experiment results show that our joint neural network ranks to in precision (89.23%),with a comparable F1 score to BiLSTM (75.39%). We finally apply the graceful sentence features to the AES task,which can reduce the large-margin prediction error by 21.41%.

关键词

优美句识别 / 深度神经网络 / 作文自动评分

Key words

graceful sentence recognition / deep neural networks / automated essay scoring

引用本文

导出引用
付瑞吉,王栋,王士进,胡国平,刘挺. 面向作文自动评分的优美句识别. 中文信息学报. 2018, 32(6): 88-97
FU Ruiji, WANG Dong, WANG Shijin, HU Guoping, LIU Ting. Elegart Sentence Recognition for Automated Essay Scoring. Journal of Chinese Information Processing. 2018, 32(6): 88-97

参考文献

[1] 刘克强.由高考考纲认识作文备考要点[J].同学少年,2009,8(5):10-11.
[2] 杨琳.美丽修辞,文采飞翔的翅膀:谈谈如何增加作文的文采[J].作文成功之路(下),2013,1(10):59-59.
[3] 杨磊.用灿烂的语言表达深邃的思想:浅谈高考语文写作的文采表达[J].课外语文(上),2017(5):151-151.
[4] Soucy P,Mineau G W.A simple KNN algorithm for text categorization[C]//Proceedings of the IEEE International Conference on Data Mining.IEEE,2001:647-648.
[5] Kazama J,Tsujii J.Maximum entropy models with inequality constraints:A case study on text categorization[J].Machine Learning,2005,60(1-3):159-194.
[6] Li R,Tao X,Lei T,et al.Using maximum entropy model for chinese text categorization[J].Journal of Computer Research and Development,2005,42(1):578-587.
[7] Langley P,Thompson K.An analysis of Bayesian classifiers[C]//Proceedings of the Tenth National Conference on Artificial Intelligence.AAAI Press,1992:223-228.
[8] Lewis D D,Info C F,Lang S,et al.A comparison of two learning algorithms for text categorization[C]//Proceedings of the Third Annual Symposium on Document Analysis and Information Retrieval,1994:81-93.
[9] Joachims T.Text categorization with support vector machines:Learning with many relevant features[M].Machine Learning:ECML-98.Springer Berlin Heidelberg,1998:137-142.
[10] Lewis D D,Yang Y,Rose T G,et al.RCV1:A new benchmark collection for text categorization research[J].Journal of Machine Learning Research,2004,5(2):361-397.
[11] Forman,George,Cohen.Learning from little:comparison of classifiers given little training[C]//Proceedings of the European Conference on Principles and Practice of Knowledge Discovery in Databases,2009:161-172.
[12] Hinton G E.Learning distributed representations of concepts[C]//Proceedings of the 8th Annual Conference of the Cognitive Science Society.1986:1-12.
[13] Behnke S.Hierarchical neural networks for image interpretation[J].Lecture Notes in Computer Science,2003,2766(3):1345-1346.
[14] Graves A,Liwicki M,Fernández S,et al.A novel connectionist system for unconstrained handwriting recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(5):855-868.
[15] Sak H,Senior A,Beaufays F.Long short-term memory recurrent neural network architectures for large scale acoustic modeling[C]//Proceedings of the Interspeech,2014:338-342.
[16] Kim Y.Convolutional neural networks for sentence classification[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing,2014:1746-1751.
[17] Zhang X,Zhao J,Lecun Y.Character-level Convolutional networks for text classification[C]//Proceedings of the Advances in Neural Information Processing Systems,2015,28(1):649-657.
[18] Hochreiter S,Schmidhuber J.Long short-term me-mory[J].Neural Computation,1997,9(8):1735-1780.
[19] Sutskever I,Vinyals O,Le Q V.Sequence to sequence learning with neural networks[C]//Proceedings of the Advances in Neural Information Processing Systems(NIPS)2014,2014:3104-3112.
[20] Palangi H,Deng L,Shen Y,et al.Deep sentence embedding using the long short term memory network:Analysis and application to information retrieval[C]//Proceedings of the IEEE/ACM Transactions on Audio Speech and Language Processing,2015,24(4):694-707.
[21] Liu X,Gao J,He X,et al.Representation learning using nulti-task deep neural networks for semantic classification and information retrieval[C]//Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,2015:912-921.
[22] Tai K S,Socher R,Manning C D.Improved semantic representations from tree-structured long short-term memory networks[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing,2015:1556-1566.
[23] Ji Young Lee,F Dernoncourt.Sequential Short-Text Classification with Recurrent and Convolutional Neural Networks[C]//Proceedings of the Conference of NAACL 2016,2016:515-520.
[24] Burstein Jill,Karen Kukich,Susanne Wolff,et al.Enriching automated essay scoring using discourse marking[C]//Proceedings of the Workshop on Discourse Relations and Discourse Marking,Annual Meeting of the Association of Computational Linguistics,Motreal,Canada,1998:15-21.
[25] Burstein J,Chodorow M.Automated essay scoring for nonnative English speakers[C]//Proceedings of the a Symposium on Computer Mediated Language Assessment and Evaluation in Natural Language Processing.Association for Computational Linguistics,1999:68-75.
[26] Burstein J.The E-rater scoring engine:Automated essay scoring with natural language processing[C]//Proceedings of the M.d.shermis and J.c.burstein,Autaonated essay scoring:A cross-discip linary prespting.N J.Lanrence Erlbaum Assoliates Int,2003:113-121.
[27] Burstein J,Chodorow M,Leacock C.Automated essay evaluation:The criterion online writing service[M].American Association for Artificial Intelligence,2004.Ai Magazine,2004,25(3):27.
[28] Yigal.Construct Validity of E-rater; in Scoring Toefl; ESSAYS[J].Ets Research Report,2007,2007(1):i-22.
[29] Burstein J,Daniel M,Slava A,et al.Towards automatic classification of discourse elements in essays[C]//Proceedings of the Proceedings of the 39th Annual Meeting on Association for Computational Linguistics,Association for Computational Lin-guistics,2001:98-105.
[30] Barzilay R,Mirella L.Modeling local coherence:An entity-based approach[J].Computational Linguistics,2008,34(1):1-34.
[31] Burstein J,Joel T,Slava A.Using entity-based features to model coherence in student essays[C]//Proceedings of the Human Language Technologies:The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics,Association for Computational Linguistics,2010:681-684.
[32] PersingIsaac,Vincent Ng.Modeling Thesis Clarity in Student Essays[C]//Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics(ACL),2013:260-269.
[33] Klebanov B,Michael F.Word Association Profiles and Their Use for Automated Scoring of Essays[C]//Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics(ACL),2013:1148-1158.
[34] Lonsdale Deryle,Diane Strong-Krause.Automated rating of ESL essays[C]//Proceedings of the HLT-NAACL 03 Workshop on Building Educational Applications Using Natural Language Processing.Association for Computational Linguistics,2003(2):61-67.
[35] Chang Tao-Hsing,Lee Chia-Hoang,Chang Yu-Ming.Enhancing automatic Chinese essay scoring system from figures-of-speech[C]// Proceedings of the 20th Pacific Asia Conference on Language,Information and Computation,2006:28-34.
[36] Alikaniotis Dimitrios,Helen Yannakoudakis,Marek Rei.Automatic text scoring using neural networks[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics,2016:715-725.
[37] Dong Fei,Zhang Yue.Automatic features for essay scoring An empirical study[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing,2016:1072-1077.
[38] Kaveh Taghipour,Hwee Tou Ng.A neural approach to automated essay scoring[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing(Association for Computational Linguistics),2016:1882-1891.
[39] Mikolov T,Chen K,Corrado G,et al.Efficient estimation of word representations in vector space[C]//Proceedings of the ICLR Workshop,2013:1-12.

基金

国家863计划课题(2015AA015409)
PDF(3295 KB)

940

Accesses

0

Citation

Detail

段落导航
相关文章

/