微博网络用户的活跃性判定方法

仲兆满,戴红伟,管燕

PDF(1721 KB)
PDF(1721 KB)
中文信息学报 ›› 2018, Vol. 32 ›› Issue (9) : 103-112.
情感分析与社会计算

微博网络用户的活跃性判定方法

  • 仲兆满1,2,戴红伟1,管燕1
作者信息 +

User Activeness Determination in Microblog

  • ZHONG Zhaoman1,2, DAI Hongwei1, GUAN Yan1
Author information +
History +

摘要

推荐系统的冷启动问题是近期的研究热点,而用户的活跃性判定是冷启动问题的基础。已有方法在判定用户的活跃性时,单纯地考虑了用户发表信息量,对社交媒体的社交关系及行为等特征利用不够。该文面向微博网络,提出了系统的用户活跃性判定方法,创新性主要体现在: (1)提出了微博网络影响用户活跃性的四类指标,包括用户背景、社交关系、发表内容质量及社交行为,避免了仅仅使用用户发表信息数量判定用户是否活跃的粗糙方式;(2)提出了用户活跃性判定流程,提出了基于四类指标的用户与用户集的差异度计算模型。以新浪微博为例,选取了学术研究、企业管理、教育、文化、军事五个领域的900个用户作为测试集,使用准确率P、召回率R及F值为评价指标,进行了实验分析和比较。结果显示,该文所提用户活跃性判定方法的准确率P、召回率R、F值比传统的判定方法分别提高了21%、13%和16%,将该文所提方法用于用户推荐,得到的P、R和F值比最新的方法分别提高了5%、2%和3%,验证了所提方法的有效性。

Abstract

To determining the user activeness,the existing methods mainly centered on the amount of information users posted,without proper utilizing the users- social relationship and behavior on microblog. This paper proposes a systematic method of determining the user activeness on microblog. In this method,four indexes are introduced to determinate users- activeness on microblog,including users- profile,social relationship,information quality and social behavior. And we also present the flow of determining the user activeness,and computation model for the diversity between a user and the whole user set. From Sina microblog,we select 900 users as the test set from the domain of academic research,business management,education,culture and military. Precision,Recall and F-value were used as evaluation index for experimental analysis and comparison among methods. The results show that our method improves the precision,recall and F-value of the user activeness determination by 21%,13% and 16%,respectively. Applying the proposed method to user recommendation,the precision,recall and F-value are increased by 5%,2% and 3%,respectively.

关键词

微博推荐系统 / 用户活跃性判定 / 用户背景 / 用户社交关系 / 用户发表内容质量 / 用户社交行为

Key words

recommendation system on Microblog / users- activeness determination / users- profile / users- social relation / users- post quality / users- social behavior

引用本文

导出引用
仲兆满,戴红伟,管燕. 微博网络用户的活跃性判定方法. 中文信息学报. 2018, 32(9): 103-112
ZHONG Zhaoman, DAI Hongwei, GUAN Yan. User Activeness Determination in Microblog. Journal of Chinese Information Processing. 2018, 32(9): 103-112

参考文献

[1] 高明,金澈清,钱卫宁,等. 面向微博系统的实时个性化推荐[J].计算机学报, 2014,37(4):963-975.
[2] Chen K L, Chen T Q, Zheng G Q, et al.Collaborative personalized tweet recommendation[C]//Proceeding of the 35th International ACM SIGIR Conference on Research and Development Information Retrieval. Portland, OR, USA, 2012:661-670.
[3] 仲兆满,胡云,李存华,等. 微博中特定用户的相似用户发现方法[J].计算机学报,2016,39(4):765-779.
[4] 徐志明,李栋,刘挺,等. 微博用户的相似性度量及其应用[J].计算机学报,2014, 37(1):207-218.
[5] 彭泽环,孙乐,韩先培,等. 基于排序学习的微博用户推荐[J].中文信息学报, 2013, 27(4):96-102.
[6] Zeng W, Zeng A, Liu H, et al. Uncovering the information core in recommender systems[J].Scientific Reports, 2014(4):6140.
[7] 汪祥,贾焰,周斌,陈儒华,韩毅.基于交互关系的微博用户标签预测[J].计算机工程与科学, 2013, 35(10):44-50.
[8] Akcora C G, Carminati B, Ferrari E. User similarities on social networks[J].Social Network Analysis and Mining, 2013(3):475-495.
[9] Lin J,Sugiyaman K, Kan M Y, et al. Addressing cold-start in app recommendation:Latent user models constructed from Twitter followers[C]//Proceedings of the SIGIR’13, 2013:283-293.
[10] Massa P, Avesani P. Trust-aware recommender systems[C]//Proceedings of the 2007 ACM Conference on Recommender Systems, 2007:17-24.
[11] Guo G B, Zhang J, Thalmann D. Merging trust in collaborative filtering to alleviate data sparsity and cold start[J].Knowledge-Based Systems, 2014(57):57-68.
[12] Pereira A L V,Hruschka E R. Simultaneous co-clustering and learning to address the cold start problem in recommender systems[J].Knowledge-Based Systems, 2015(82):11-19.
[13] 古万荣,董守斌,曾之肇,等. 基于微博用户模型的个性化新闻推荐. 中文信息学报, 2016, 30(1):93-100.
[14] 王占,林岩.基于信任与用户兴趣变化的协同过滤方法研究[J].情报学报, 2017, 36(2):197-205.
[15] Meyffret S, Medini L, Laforest F. Trust-based local and social recommendation[C]//Proceedings of the 2012 ACM Conference on Recommender Systems. Dublin, Ireland, ACM, 2012:53-60.
[16] Yuan W W, Yang X W, Steck H, et al. Circle-based recommendation in online social networks[C]//Proceedings of the 2012 ACM Conference on Recommender Systems. Beijing, China, ACM, 2012:1267-1275.
[17] Ocepek U, Rugelj J, Bosnic Z. Improving matrix factorization recommendations for examples in cold start[J].Expert Systems with Applications, 2015(42):6784-6794.
[18] 于洪,李俊华.一种解决新项目冷启动问题的推荐算法[J].软件学报,2015,26(6):1395-1408.
[19] 杨圩生,罗爱民,张萌萌. 基于信任环的用户冷启动推荐[J].计算机科学, 2013, 40(11a):363-366.
[20] Balcan D, Colizza V, Gonalves B, et al. Multiscale mobility networks and the spatial spreading of infectious diseases[J].Proceedings of the National Academy of Sciences, 2009, 106(51):21484-21489.
[21] Liang C, Liu Z Y, Sun M S. Expert finding for Microblog misinformation identification[C]//Proceedings of the 24th ACL International Conference on Computational Linguistics. Mumbai, 2012:703-712.
[22] 仲兆满,管燕,胡云,等. 基于背景和内容的微博用户兴趣挖掘[J].软件学报, 2017, 28(2):278-291.

基金

国家自然科学基金(61403156);江苏省六大人才高峰基金资助(XXRJ-013);江苏高校品牌专业建设工程资助(PPZY2015A038);连云港市521高层次人才基金资助
PDF(1721 KB)

694

Accesses

0

Citation

Detail

段落导航
相关文章

/