实体关系抽取解决了原始文本中目标实体之间的关系分类问题,同时也被广泛应用于文本摘要、自动问答系统、知识图谱、搜索引擎和机器翻译中。由于中文句式和语法结构复杂,并且汉语有更多歧义,会影响中文实体关系分类的效果。该文提出了基于多特征自注意力的实体关系抽取方法,充分考虑词汇、句法、语义和位置特征,使用基于自注意力的双向长短期记忆网络来进行关系预测。在中文COAE 2016 Task 3和英文SemEval 2010 Task 8 数据集上的实验表明该方法表现出了较好的性能。
Abstract
Entity relation extraction identifies the relation between the target entity in the raw text, wichi is also widely used in text summarization, automatic question answering system, knowledge map, search engine, and machine translation. To deal with the complex structure and ambiguity in the Chinese sentences, this paper proposes a multi-feature self-attention entity relation extraction method. It employ a self-attention-based Bi-LSTM to capture the lexical, syntactic, semantic and position features. The experimental results on the Chinese COAE-2016 Task 3 and the English SemEval-2010 Task 8 show our method produces better performances.
关键词
实体关系抽取 /
自注意力 /
双向长短期记忆网络 /
多特征
{{custom_keyword}} /
Key words
entity relation extraction /
self-attention /
bidirectional long short-term memory /
multi-features
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Socher R, Huval B, Manning C D, et al. Semantic compositionality through recursive matrix-vector spaces[C]//Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, 2012. Association for Computational Linguistics, 2012:1201-1211.
[2] Zeng D, Liu K, Lai S, et al. Relation classification via convolutional deep neural network[C]//Proceedings of COLING, 2014:2335-2344.
[3] Zhang S, Zheng D, Hu X, et al. Bidirectional long short-term memory networks for relation classification[C]//Proceedings of the 29th Pacific Asia Conference on Language, Information and Computation,2015:73-78.
[4] Zhou P, Shi W, Tian J, et al. Attention-based bidirectional long short-term memory networks for relation classification[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, 2016:207-212.
[5] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]//Proceedings of Advances in Neural Information Processing Systems, 2017:5998-6008.
[6] Kambhatla N. Combining lexical, syntactic, and semantic features with maximum entropy models for extracting relations[C]//Proceedings of the ACL 2004 on Interactive Poster and Demonstration Sessions. Association for Computational Linguistics, 2004:22.
[7] Miller S, Fox H, Ramshaw L, et al. A novel use of statistical parsing to extract information from text[C]//Proceedings of the 1st Meeting of the North American Chapter of the Association for Computational Linguistics, 2000.
[8] Zhao S, Grishman R. Extracting relations with integrated information using kernel methods[C]//Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics. Association for Computational Linguistics, 2005:419-426.
[9] Plank B, Moschitti A. Embedding semantic similarity in tree kernels for domain adaptation of relation extraction[C]//Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, 2013:1498-1507.
[10] Santors C N D, Bing X, Zhou B. Classifying relations by ranking with convolutional neural networks[C]//Proceedings of the 53rd Annual Meeting of the ACL, 2015,86(86): 132-137.
[11] Zhang D, Wang D. Relation classification via recurrent neural network[J]. arXiv preprint arXiv: 1508.01006, 2015.
[12] 胡新辰. 基于 LSTM 的语义关系分类研究[D]. 哈尔滨: 哈尔滨工业大学硕士学位论文, 2015.
[13] Lin Y, Shen S, Liu Z, et al. Neural relation extraction with selective attention over instances[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1:Long Papers), 2016:2124-2133.
[14] 王红,史金钏,张志伟. 基于注意力机制的LSTM的语义关系抽取[J]. 计算机应用研究, 2018, 35(5): 1417-1420.
[15] Mikolov T, Sutskever I, Chen K, et al. Distributed representations of words and phrases and their compositionality[C]//Proceedings of Advances in Neural Information Processing Systems, 2013:3111-3119.
[16] 孙建东,顾秀森,李彦. 基于 COAE2016 数据集的中文实体关系抽取算法研究[J]. 山东大学学报 (理学版), 2017, 52(9): 7-12.
[17] 王林玉. 基于深度卷积神经网络的实体关系抽取[D].太原: 太原理工大学硕士学位论文, 2017.
[18] Wu W, Chen Y, Xu J, et al. Attention-Based Convolutional Neural Networks for Chinese Relation Extraction[C]//Proceedings of Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data, Springer, 2018, 147-158.
[19] Rink B, Harabagiu S. Utd: Classifying semantic relations by combining lexical and semantic resources[C]//Proceedings of the 5th International Workshop on Semantic Evaluation, 2010. Association for Computational Linguistics, 2010:256-259.
[20] Yan X, Mou L, Li G, et al. Classifying relations via long short term memory networks along shortest dependency path[J].arXiv preprint arXiv: 1508.03720. 2015.
[21] Zhang X, Chen F, Huang R. A combination of RNN and CNN for attention-based relation classification[J]. Procedia Computer Science, 2018, 131:911-917.
[22] Cui Z, Pan L, Liu S. Hybrid BiLSTM-Siamese network for relation extraction[C]//Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems. International Foundation for Autonomous Agents and Multiagent Systems, 2019:1907-1909.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金(61363045)
{{custom_fund}}