基于社交媒体的事件脉络挖掘研究进展

张晨昕,饶元,樊笑冰,王硕

PDF(6748 KB)
PDF(6748 KB)
中文信息学报 ›› 2019, Vol. 33 ›› Issue (11) : 15-30.
综述

基于社交媒体的事件脉络挖掘研究进展

  • 张晨昕1,2,饶元1,2,樊笑冰2,王硕2
作者信息 +

Research Progress of Event Summarization Based on Social Media

  • ZHANG Chenxin1,2, RAO Yuan1,2, FAN Xiaobing2, WANG Shuo2
Author information +
History +

摘要

随着Web 2.0的兴起以及移动互联网与智能终端的蓬勃发展,以微博为代表的社交媒体迅速发展壮大。基于社交媒体的事件脉络挖掘技术在突发事件检测、事件走势分析、舆情预测等诸多方面发挥着重要作用,受到学术界的广泛关注。该文在最新研究成果与文献的基础上,以事件脉络挖掘的实现为出发点,概括总结了核心步骤中存在的关键技术,并归纳提出了目前事件脉络挖掘与分析过程中存在的4个关键性的技术问题与挑战,分别如下: 多模态信息融合条件下的事件脉络生成、跨媒介异构数据协同下的事件挖掘与事件脉络生成、层次化多粒度复杂事件的关系映射和实时数据条件下动态事件的快速识别与脉络生成。同时,针对上述关键问题与技术挑战进行了理论探讨、工作进展与趋势分析以及实际应用介绍,从而为深入研究和解决基于社交媒体的事件脉络挖掘技术提供了新的研究线索与方向。

Abstract

The event summarization technology based on social media plays an important role in the study of emergency detection, event trend analysis, public opinion analysis and many other aspects. Based on a large number of latest research, this paper summarizes the key technologies in the core steps from the perspective of the realization of event summarization,and puts forward the following four key technical problems and challenges in the process of event context mining and analysis: how to generate event summarization under multimodal information fusion; how to mine event and generate event summarization under cross-media heterogeneous data collaboration; how to map relationship hierarchically and at multi-granularity of complex events and how to recognize event and generate event summarization under real-time conditions. Meanwhile, this paper discuss the related theories, research progresses and research trend, which can provide new research clues and directions for event summarization mining technology based on social media.

关键词

社交媒体 / 多模态信息 / 跨媒介 / 事件脉络挖掘

Key words

social media / multimodal data / cross-media / event summarization

引用本文

导出引用
张晨昕,饶元,樊笑冰,王硕. 基于社交媒体的事件脉络挖掘研究进展. 中文信息学报. 2019, 33(11): 15-30
ZHANG Chenxin, RAO Yuan, FAN Xiaobing, WANG Shuo. Research Progress of Event Summarization Based on Social Media. Journal of Chinese Information Processing. 2019, 33(11): 15-30

参考文献

[1] Alsaedi N,Burnap P,Rana O.Can we predict a riot? Disruptive event detection using twitter[J].ACM Transactions on Internet Technology,2017,17(2): 18.
[2] Rudra K,Ghosh S,Ganguly N,et al.Extracting situational information from microblogs during disaster events: A classification-summarization approach[C]//Proceedings of the 24th ACM International Conference on Information and Knowledge Management.New York: ACM,2015: 583-592.
[3] Cui W,wang P,DU Y,et al.An algorithm for event detection based on social media data[J].Neurocomputing,2017,254: 53-58.
[4] Huang Y,Shen C,Li T.Event summarization for sports games using twitter streams[J].World Wide Web,2018,21(3): 609-627.
[5] BIAN J,Yang Y,Zhang H,et al.Multimedia summarization for social events in microblog stream[J].IEEE Transactions on Multimedia,2015,17(2): 216-228.
[6] Zhou Q,Yuan R,Li T.An improved textual storyline generating framework for disaster information management[C]//Proceedings of the 12th International Conference on Intelligent Systems and Knowledge Engineering,IEEE,2017: 1-8.
[7] Zhao Q,Mitra P,Chen B.Temporal and information flow based event detection from social text streams[C]//Proceedings of the National Conference on Artificial Intelligence.Menlo Park,CA: AAAI,2007: 1501-1506.
[8] Imarn M,Castillo C,Diaz,et al.Processing social media messages in mass emergency: A survey[J].ACM Computing Surveys (CSUR),2015,47(4): 67.
[9] 程浩,郭斌,欧阳逸,等.基于社交媒体的事件感知与多模态事件脉络生成[J].计算机科学,2017(S1): 43-46.
[10] Guo B,Ouyang Y,Zhang C,et al.CrowdStory: Fine-grained event storyline generation by fusion of multi-modal crowdsourced data[J].Proceedings of the ACM on Interactive,Mobile,Wearable and Ubiquitous Technologies,2017,1(3): 55.
[11] Atefeh F,Khreich W .A survey of techniques for event detection in twitter[J].Computational Intelligence,2015,31(1): 132-164.
[12] 张小明,李舟军,巢文涵.基于增量型聚类的自动话题检测研究[J].软件学报,2012,23(6): 1578-1587.
[13] Mu L,Jin P,Zheng L,et al.Lifecycle-based event detection from microblogs[C]//Proceedings of the 2018 Web Conference Companion.New York: ACM,2018: 283-290.
[14] Mathews P,Gray C,Mitchell L,et al.SMERC: Social media event response clustering using textual and temporal information[C]//Proceedings of the 2018 IEEE International Conference on Big Data.Piscataway,NJ: IEEE,2018: 3695-3700.
[15] Blei D M,Ng A Y,Jordan M I.Latent dirichlet allocation[J].Journal of Machine Learning Research,2003,3(Jan): 993-1022.
[16] wang D,Alrubaie A,Clarke SS,et al.Real-time traffic event detection from social media[J].ACM Transactions on Internet Technology,2017,18(1): 9.
[17] Shi L,Wu Y,Liu L,et al.Event detection and identification of influential spreaders in social media data streams[J].Big Data Mining and Analytics,2018,1(1): 34-46.
[18] Chen X,Zhou X,Sellis T,et al.Social event detection with retweeting behavior correlation[J].Expert Systems with Applications,2018,114: 516-523.
[19] Yang S,Sun Q,Zhou H,et al.A topic detection method based on KeyGraph and community partition[C]//Proceedings of the 2018 International Conference on Computing and Artificial Intelligence.New York: ACM,2018: 30-34.
[20] Ge T,Cui L,Chang B,et al.Event detection with burst information networks[C]//Proceedings of the 26th International Conference on Computational Linguistics: Technical Papers,2016: 3276-3286.
[21] Zhou X,Chen L.Event detection over twitter social media streams[J].Vldb Journal,2014,23(3): 381-400.
[22] Zhang C,Lei D,Yuan Q,et al.GeoBurst+: Effective and real-time local event detection in geo-tagged tweet streams[J].ACM Transactions on Intelligent Systems and Technology,2018,9(3): 34.
[23] 张鲁民,贾焰,周斌,等.一种基于情感符号的在线突发事件检测方法[J].计算机学报,2013,36(8): 1659-1667.
[24] Yang S F,Rayz J T.An event detection approach based on Twitter hashtags[J].arXiv preprint arXiv: 1804.11243,2018.
[25] Barrost P H,Cardoso-pereira I,Loureiro A A F,et al.Event detection in social media through phase transition of bigrams entropy[C]//Proceedings of the 2018 IEEE Symposium on Computers and Communications.Piscataway,NJ: IEEE,2018: 1-6.
[26] Wang Z,Zhang Y.A neural model for joint event detection and summarization[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence.Menlo Park,CA: AAAI,2017: 4158-4164.
[27] Lee K,Qadir A,Hasan S A,et al.Adverse drug event detection in tweets with semi-supervised convolutional neural networks[C]//Proceedings of the 26th International Conference on World Wide Web.International World Wide Web Conferences Steering Committee,2017: 705-714.
[28] Yen A Z,Huang H H,Chen H H.Detecting personal life events from twitter by multi-task LSTM[C]//Proceedings of International World Wide Web Conferences Steering Committee,2018: 21-22.
[29] Feng X,Qin B,Liu T.A language-independent neural network for event detection[J].Science China(Information Sciences),2018,61(9): 92-106.
[30] Zhao L,wang J,Guo X.Distant-supervision of heterogeneous multitask learning for social event forecasting with multilingual indicators[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence.Menlo Park,CA: AAAI,2018: 4458-4505.
[31] Meladianos P.Degeneracy-based real-time sub-event detection in twitter stream[J].Dissertations & Theses Gradworks,2015: 1-10.
[32] Dehghani N,Asadpour M.Graph based method for summarized storyline generation in Twitter[J].arXiv preprint arXiv: 1504.07361,2015.
[33] Schinas M,Papadopoulos S,Petkos G,et al.Multimodal graph-based event detection and summarization in social media streams[C]//Proceedings of the 23rd ACM International Conference on Multimedia.New York: ACM,2015: 189-192.
[34] Srijith P K,Hepple M,Bontcheva K,et al.Sub-story detection in Twitter with hierarchical Dirichlet processes[J].Information Processing & Management,2017,53(4): 989-1003.
[35] Chen G,Xu N,Mao W.An Encoder-memory-decoder framework for sub-event detection in social media[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management.New York: ACM,2018: 1575-1578.
[36] Xu Z,Liu Y,Zhang H,et al.Building the multi-modal storytelling of urban emergency events based on crowd sensing of social media analytics[J].Mobile Networks and Applications,2017,22(2): 218-227.
[37] 李莹莹,马帅,蒋浩谊,等.一种基于社交事件关联的故事脉络生成方法[J].计算机研究与发展,2018,55(9): 1972-1986.
[38] Yang L,Yang N.An integrated event summarization approach for complex system Management[C]//Proceedings of IEEE Transactions on Network and Service Management,2019.
[39] Yang M,Tu W,Qu Q,et al.MARES: Multitask learning algorithm for web-scale real-time event summarization[J].World Wide Web,2019,22(2): 499-515.
[40] Alsaedi N,Burnap P,Rana O.Temporal TF-IDF: A high performance approach for event summarization in twitter[C]//Proceedings of the 2016 IEEE/WIC/ACM International Conference on Web Intelligence.Piscataway,NJ: IEEE,2016: 515-521.
[41] Schinas M,Papadopoulos S,Kompatsiaris Y,et al.MGraph: Multimodal event summarization in social media using topic models and graph-based ranking[J].International Journal of Multimedia Information Retrieval,2016,5(1): 51-69.
[42] 李培,翁伟,林琛.中文微博故事线生成方法[J].中文信息学报,2016,30(3): 143-151.
[43] Lee W Y,Hsu W H,Satoh S.Learning from cross-domain media streams for event-of-interest discovery[J].IEEE Transactions on Multimedia,2018,20(1): 142-154.
[44] Zhang T,Xu C.Cross-domain multi-event tracking via CO-PMHT[J].ACM Transactions on Multimedia Computing,Communications,and Applications,2014,10(4): 31.
[45] Yang X,Zhang T,Xu C.Cross-domain feature learning in multimedia[J].IEEE Transactions on Multimedia,2015,17(1): 64-78.
[46] Qian S,Zhang T,Xu C.Cross-domain collaborative learning via discriminative nonparametric bayesian model[J].IEEE Transactions on Multimedia,2018,20(8): 2086-2099.
[47] Yang Z,Cheng M,Li Q,et al.Cross-domain and cross-modality transfer learning for multi-domain and multi-modality event detection[C]//Proceedings of the International Conference on Web Information Systems Engineering.Springer,Cham,2017: 516-523.
[48] Yang Z,Li Q ,Wenyin L,et al.Shared multi-view data representation for multi-domain event detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2019,PP(99): 11.
[49] Wang S,Giridhar P,Kaplan L,et al.Unsupervised event tracking by integrating twitter andinstagram[C]//Proceedings of the 2nd International Workshop on Social Sensing.New York: ACM,2017: 81-86.
[50] Tiwari A,Weth C V D,Kankanhalli M S.Multimodal multiplatform social media event summarization[J].ACM Transactions on Multimedia Computing,Communications,and Applications,2018,14(2s): 38.
[51] Chen F,Neill D B.Non-parametric scan statistics for event detection and forecasting in heterogeneous social media graphs[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York: ACM,2014: 1166-1175.
[52] Xu J,Lu T C.Seeing the big picture from microblogs: Harnessing social signals for visual event summarization[C]//Proceedings of the International Conference on Intelligent User Interfaces.New York: ACM,2015: 62-66.
[53] Amato F,Castiglione A,Moscato V,et al.Multimedia summarization using social media content[J].Multimedia Tools and Applications,2018,77(14): 17803-17827.
[54] Choi J,Kim E,Larson M,et al.Event 360: Social event discovery from web-scale multimedia collection[C]//Proceedings of the 23rd ACM International Conference on Multimedia.New York: ACM,2015: 193-196.
[55] Zhang T,Whitehead S,Zhang H,et al.Improving event extraction via multimodal integration[C]//Proceedings of the 2017 ACM on Multimedia Conference.New York: ACM,2017: 270-278.
[56] Chen Z,Zhang X,Boedihardjo A P,et al.Multimodal storytelling via generative adversarial imitation learning[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence.AAAI Press,2017: 3967-3973.
[57] Shah R R,Shaikh A D,Yu Y,et al.Eventbuilder: Real-time multimedia event summarization by visualizing social media[C]//Proceedings of the 23rd ACM International Conference on Multimedia.New York: ACM,2015: 185-188.
[58] Feng W,Zhang C,Zhang W,et al.Streamcube: hierarchical spatio-temporal hashtag clustering for event exploration over the twitter stream[C]//Proceedings of the 31st International Conference on Data Engineering Piscataway,NJ: IEEE,2015: 1561-1572.
[59] Rehman F U,Afyouni I,Lbath A,et al.Understanding the spatio-temporal scope of multi-scale socialevents[C]//Proceedings of the 1st ACM SIGSPATIAL Workshop on Analytics for Local Events and News.New York: ACM,2017: 1.
[60] Hua T,Zhang X,wang W,et al.Automatical storyline generation with help from twitter[C]//Proceedings of the 25th ACM International Conference on Information and Knowledge Management.New York: ACM,2016: 2383-2388.
[61] Qian X,Li M,Ren Y,et al.Social media based event summarization by user-text-image co-clustering[J].Knowledge-Based Systems,2019,164: 107-121.
[62] Yuan R,NI J,Zhou Q.Generating multimedia storyline for effective disaster information awareness[J].IEEE Access,2019: 47401-47410.
[63] Malas M D,Vaidya M V.Real-time progressive event summarization and sentiment analysis on evolutionary tweet stream[C]//Proceedings of the 2017 International Conference on Intelligent Computing and Control Systems Piscataway,NJ: IEEE,2017: 388-393.
[64] Hasan M,Orgun M A,Schwitter R.Real-time event detection from the Twitter data stream using the TwitterNews+Framework[J].Information Processing & Management,2019,56(3): 1146-1165.
[65] Nguyen D T,Jung J E.Real-time event detection for online behavioral analysis of big social data[J].Future Generation Computer Systems,2017,66: 137-145.
[66] Wang S,Giridhar P,wang H,et al.StoryLine: Unsupervised geo-event demultiplexing in social spaces without location information[C]//Proceedings of the 2nd International Conference on Internet-of-Things Design and Implementation.New York: ACM,2017: 83-93.
[67] Fahy C,Yang S,gongora M.Ant colony stream clustering: A fast density clustering algorithm for dynamic data streams[J].IEEE Transactions on Cybernetics,2018 (99): 1-14.
[68] Chen G,Kong Q,Mao W.Online event detection and tracking in social media based on neural similarity metric learning[C]//Proceedings of the International Conference on Security Informatics,IEEE,2017: 182-184.
[69] Panagiotou N,Akkaya C,TsioutsiouliklisS K,et al.First story detection using entities and relations[C]//Proceedings of the COLING 2016,the 26th International Conference on Computational Linguistics: Technical Papers.2016: 3237-3244.
[70] Liang S,Yilmaz E,Kanoulas E.Dynamic clustering of streaming short documents[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York: ACM,2016: 995-1004.
[71] Guo J,gong Z.A density-based nonparametric model for online event discovery from the social media data[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence.AAAI Press,2017: 1732-1738.
[72] Yin J,Chao D,Liu Z,et al.Model-based clustering of short text Streams[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.New York: ACM,2018: 2634-2642.

基金

国家自然科学基金(61741208,F020807);教育部“云数融合科教创新”基金(2017B00030);中央高校基本科研业务费(ZDYF2017006);2018年中央高校建设世界一流大学(学科)和特色发展引导专项资金(PY3A022);2018年西安市碑林区科技项目(GX1803);2019年教育部社科重大项目(18JZD022);2019年深圳市科技创新项目(JCYJ20180306170836595)
PDF(6748 KB)

1140

Accesses

0

Citation

Detail

段落导航
相关文章

/