神经机器翻译是目前机器翻译领域的主流方法,而翻译记忆是一种帮助专业翻译人员避免重复翻译的工具,其保留之前完成的翻译句对并存储在翻译记忆库中,进而在之后的翻译过程中通过检索去重用这些翻译。该文基于数据扩充提出两种将翻译记忆与神经机器翻译相结合的方法: (1)直接拼接翻译记忆在源语句后面;(2)通过标签向量拼接翻译记忆。该文在中英与英德数据集上进行了实验,实验表明,该方法可以使翻译性能获得显著提升。
Abstract
Neural machine translation is currently the most popular method in the field of machine translation, while translation memory is a tool to help professional translators avoid repeated translations. This paper proposes two methods to integrate the translation memory into neural machine translation via data augmentation: (1) directly stitching translation memory after the source sentence; (2) stitching translation memory by tag embedding. Experiments on Chinese-English and English-German datasets show that proposed methods can achieve significant improvements.
关键词
神经机器翻译 /
翻译记忆 /
数据扩充
{{custom_keyword}} /
Key words
neural machine translation /
translation memory /
data augmentation
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 冯志伟. 自然语言机器翻译新论 [M]. 北京: 语文出版社, 1994.
[2] 刘群. 机器翻译研究新进展 [J]. 当代语言学, 2009, 11(02): 147-158.
[3] Sutskever Ilya, Vinyals Oriol, Le Quoc V. Sequence to sequence learning with neural networks[J]. Advances in Neural Information Processing Systems, 2014, 27(4):3104-3112.
[4] Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate[C]//Proceedings of International Conference on Learning Representations. San Diego, CA:International Conference on Learning Representations,2015.
[5] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]//Proceedings of Advances in Neural Information Processing Systems, 2017: 5998-6008.
[6] Koehn P,Senellart J. Convergence of translation memory and statistical machine translation[C]//Proceedings of AMTA Workshop on MT Research and the Translation Industry, 2010: 21-31.
[7] Cao Q,Xiong D. Encoding gated translation memory into neural machine translation[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, 2018: 3042-3047.
[8] Wang K,Zong C, Su K Y. Integrating translation memory into phrase-based machine translation during decoding[C]//Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, 2013: 11-21.
[9] Wang K,Zong C, Su K Y. Dynamically integrating cross-domain translation memory into phrase-based machine translation during decoding[C]//Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics, 2014: 398-408.
[10] Gu J, Wang Y, Cho K, et al. Search engine guided neural machine translation[C]//Proceedings of Thirty-Second AAAI Conference on Artificial Intelligence, 2018.
[11] Bapha A, Firat O. Non-parametric adaptation for neural machine translation[J]. arXiv preprint arXiv:1903.00058, 2019.
[12] Sennrich R, Haddow B, Birch A. Improving neural machine translation models with monolingual data[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, 2016: 86-96.
[13] Edunov S, Ott M, Auli M, et al. Understanding back-translation at scale[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, 2018: 489-500.
[14] Sennrich R, Haddow B. Linguistic input features improve neural machine translation[C]//Proceedings of the First Conference on Machine Translation, 2016: 83-91.
[15] Li J,Xiong D, Tu Z, et al. Modeling source syntax for neural machine translation[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, 2017: 688-697.
[16] Bloodgood M, Strauss B. Translation memory retrieval methods[J]. arXiv preprint arXiv:1505.05841, 2015.
[17] Rafalovitch A, Dale R. United nations general assembly resolutions: A six-language parallel corpus[C]//Proceedings of the MT Summit XII. 2009, 12: 292-299.
[18] Joulin A, Grave E, Bojanowski P, et al. Fasttext. zip: Compressing text classification models[J]. arXiv preprint arXiv:1612.03651, 2016.
[19] Sennrich R, Haddow B, Birch A. Neural machine translation of rare words with subword units[J]. arXiv preprint arXiv:1508.07909, 2015.
[20] Papineni K, Roukos S, Ward T, et al. BLEU: A method for automatic evaluation of machine translation[C]//Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, 2002: 311-318.
[21] Kingma D P, Ba J. Adam: A method for stochastic optimization[J]. arXiv preprint arXiv:1412.6980,2014.
[22] Srivastava N, Hinton G,Krizhevsky A, et al. Dropout: A simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15(1):1929-1958.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家重点研发计划(2019QY1802)
{{custom_fund}}