开放型对话技术研究综述

陈鑫,周强

PDF(1001 KB)
PDF(1001 KB)
中文信息学报 ›› 2021, Vol. 35 ›› Issue (11) : 1-12.
综述

开放型对话技术研究综述

  • 陈鑫1,周强2
作者信息 +

A Survey of Research on Open Domain Dialogue Systems

  • CHEN Xin1, ZHOU Qiang2
Author information +
History +

摘要

开放型对话是对话系统的一个重要分支,有着极强的应用前景。它不同于任务型对话,具有较强的随机性和不确定性。该文从回复方式驱动对话技术发展这个角度切入,进行开放型对话技术发展过程的梳理,紧扣序列到序列及其改良模型在对话生成场景中应用的这条主要线索,对开放型对话的关键技术进行了探讨和研究。上述研究勾画出了从单轮对话到多轮对话发展的主要研究主线。为进一步探索对话技术发展的内在规律和发展趋势,通过研究发现,基于序列到序列的生成模型在面向多轮对话生成的任务场景时,显现出模型实现特点和应用场景不完全匹配的问题。因此,在该文的最后,从引入外部知识、改写机制及代理机制三个角度切入,初步探索了相关技术针对多轮对话生成的可能改进方向。

Abstract

As a branch of the dialogue system, open domain dialogue has a good prospect in application. Different from task-based dialogue, it has strong randomness and uncertainty. This paper reviews the researches on open domain dialogue from the perspective of reply method, focusing on the application and improvement of sequence-to-sequence model in dialogue generation scenarios. The researches exhibit a clear clue from single-round dialogue to multi-round dialogue, and we further reveal that the sequence to sequence generation model has some problems that the characteristics of the model implementation and the application scenarios do not exactly match in the multi-round dialogue generation. Finally, we explore the possible improvements for the generation of multi-round dialogues from introducing external knowledge, introducing rewriting mechanism and introducing agent mechanism.

关键词

对话技术 / 回复方式驱动 / 序列到序列模型 / 外部知识 / 改写及代理机制

Key words

dialogue technology / reply way driven / sequence to sequence model / external knowledge / rewrite and agent mechanisms

引用本文

导出引用
陈鑫,周强. 开放型对话技术研究综述. 中文信息学报. 2021, 35(11): 1-12
CHEN Xin, ZHOU Qiang. A Survey of Research on Open Domain Dialogue Systems. Journal of Chinese Information Processing. 2021, 35(11): 1-12

参考文献

[1] Zhou L, Gao J F, Li D, et al. The designand implementation of XiaoIce, an empathetic social chatbot[J]. arXiv preprint arXiv: 1812.08989, 2019.
[2] Le Q, Mikolov T. Distributed representations of sentences and documents[J]. arXiv preprint arXiv: 1405.4053, 2014.
[3] Song Y P, Yan R, Li X, et al. Two arebetter than one; An ensemble of retrieval-and generation-based dialog systems[J]. arXiv preprint arXiv: 1610.07149, 2016.
[4] Wu W Q, Guo Z, Zhou X Y, et al. Proactive human-machine conversation with explicit conversation goal[C]//Proceedings of the57th Annual Meeting of the Association for Computational Linguistics, 2019: 3794-3804.
[5] Serban I V, Lowe R, Henderson P, et al. A Survey of available corpora for building data-driven dialogue systems[J]. arXiv preprint arXiv: 1512.05742, 2015.
[6] Chen Y N, Celikyilmaz A, HakkaniD. Deep learning for dialogue systems[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, 2017: 8-14.
[7] 陈晨, 朱晴晴, 严睿, 等. 基于深度学习的开放领域对话系统研究综述[J]. 计算机学报, 2019, 42(7): 1439-1466.
[8] Chen H S, Liu X R, Yin D W, et al. A survey on dialogue systems: Recent advances and new frontiers[J]. arXiv preprint arXiv: 1711.01731, 2017.
[9] 贾熹滨, 李让, 胡长建, 陈军成. 智能对话系统研究综述[J]. 北京工业大学学报, 2017, 43(9): 1344-1356.
[10] Gao J F, Galley M, Li L H. Neural approaches to conversational AI[J]. arXiv preprint arXiv: 1809.08267, 2018.
[11] Song K T, Tan X, Qin T, et al. MASS: Masked sequence to sequence pre-training for language generation[J]. arXiv preprint arXiv: 1905.02450, 2019.
[12] Wang H, Lu Z D, Li H, et al. A dataset for research on short-text conversations[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2013: 935-945.
[13] Hu B T,Lu Z D,Li H, et al. Convolutional neural network architectures for matching natural language sentences[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems, 2014: 2042-2050.
[14] Zhou X Y, Dong D X, Wu H, et al. Multi-view response selection for human-computer conversation[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2016: 372-381.
[15] Wu Y, Wu W, Xing C, et al. Sequential matching network: A new architecture for multi-turn response selection in retrieval-based chat-bots[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, 2017: 496-505.
[16] Zhang Z S, Li J T, Zhu P F, et al. Modeling multi-turn conversation with deep utterance aggregation[C]//Proceedings of the 27th International Conference on Computational Linguistics, 2018: 3740-3752.
[17] Zhou X Y, Li L, Dong D X, et al. Multi-turn response selection for chatbots with deep attention matching network[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, 2018: 1118-1127.
[18] Tao C Y, Wu W, Xu C, et al. Multi-representation fusion network for multi-turn response selection in retrieval-based chatbots[C]//Proceedings of the 12th ACM International Conference on Web Search and Data Mining, 2019: 267-275.
[19] Vinyals O, Le Q. A neural conversational model[J]. arXiv preprint arXiv: 1506.05869, 2015.
[20] Shang L F, Lu Z D, Li H. Neural responding machine for short-text conversation[C]//Proceedings of the International Joint Conference on Natural Language Processing, 2015: 1577-1586.
[21] Li J W, Monroe W, Shi T, et al. Adversarial learning for neural dialogue generation[C]//Proceedings of the Empirical Methods in Natural Language Processing, 2017: 2157-2169.
[22] Xu Z, Liu B Q, Wang B X, et al. Neural Response Generation via GAN with an approximate embedding layer[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2017: 617-626.
[23] Sordoni A, Galley M, Auil M, et al. A neural network approach to context-sensitive generation of conversational responses[C]//Proceedings of the 14th Annual Conference of the North American Chapter of the Association for Computational Linguistics, 2015: 196-205.
[24] Serban I V, Sordoni A, Bengio Y, et al. Building end-to-end dialogue systems using generative hierarchical neural network models[C]//Proceedings of the National Conference on Artificial Intelligence, 2016: 3776-3783.
[25] Serban I V, Klinger T, Tesauro G. Multiresolution recurrent neural networks: An application to dialogue response generation[C]//Proceedings of the National Conference on Artificial Intelligence, 2016: 3288-3294.
[26] Li J, Monroe W, Ritter A, et al. Deep reinforcement learning for dialogue generation[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2016: 1192-1202.
[27] Song Y P, Li C T, Nie J U, et al. An ensemble of retrieval-based and generation-based human-computer conversation systems[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence, 2018: 4382-4388.
[28] Zhu Q F, Cui L, Zhang W N, et al. Retrieval-enhanced adversarial training for neural Response generation[C]//Proceedings of the57th Annual Meeting of the Association for Computational Linguistics, 2019: 3763-3773.
[29] Li J, Galley M, Brocktt C, et al. Adiversity-promoting objective function for neural conversation models[C]//Proceedings of the North American Chapter of the Association for Computational linguistics, 2016: 110-119.
[30] Song H Y, Zhang W N, Cui Y M, et al. Exploiting persona information for diverse generation of conversational responses[J]. arXiv preprint arXiv: 1905.12188, 2019.
[31] Zheng Y H, Zhang R S, Mao X X, et al. A pre-training based personalized dialogue generation model with persona-sparse data[J]. arXiv preprint arXiv: 1911.04700,2019.
[32] Gu J T, Lu Z D, Li H, et al. Incorporating copying mechanism in sequence-to-sequence learning[J]. arXiv preprint arXiv: 1603.06393, 2016.
[33] Gulcehre C, Ahn S, Nallapati R, et al. Pointing the unknown words[C]//Proceedings ofthe 54th Annual Meeting of the Association for Computational Linguistics, 2016: 140-149.
[34] See A, Liu P, Manning C. Get to the point: Summarization with pointer-generator networks[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, 2017: 1073-1083.
[35] Yao L L, Zhang Y Y, Feng Y S, et al. Towards implicit content-introducing for generative short-text conversation systems[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2017: 2190-2199.
[36] Xing C,Wu W, Wu Y, et al. Topic aware neural response generation[J]. arXiv preprint arXiv: 1606.08340, 2016.
[37] Dziri N,Kamalloo E, Mathewson K, et al. Augmenting neural response generation with context-aware topical attention[J]. arXiv preprint arXiv: 1811.01063, 2018.
[38] Ke P, Guan J, Huang M L, et al. Generating informative responses with controlled sentence function[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, 2018: 1499-1508.
[39] Xu C, Wu W, Tao C Y, et al. Neural response generation with meta-words[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 2019: 5416-5426.
[40] Tang J H, Zhao T C, Xiong C Y,et al. Target-guided open-domain conversation[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 2019: 5624-5634.
[41] Logeswaran L, Lee H, Radev D. Sentence ordering and coherence modeling using recurrent neural networks[J]. arXiv preprint arXiv: 1611.02654, 2017.
[42] Li J, Jurafsky D. Neural net models of open-domain discourse coherence[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2017: 198-209.
[43] Li X, Mou L L, Yan R, et al. Stalemate breaker: A proactive content-introducing approach to automatic human-computer conversation[C]//Proceedings of the International Joint Conference on Artificial Intelligence, 2016: 2845-2851.
[44] Mou L L, Song Y, Yan R, et al. Sequence to backward and forward sequences: A content-introducing approach to generative short-text conversation[C]//Proceedings of the 26th International Conference on Computational Linguistics, 2016: 3349-3358.
[45] Xu Z, Liu B, Wang B, et al. Incorporating loose-structured knowledge into conversation modeling via recall-gate LSTM[C]//Proceedings of the International Symposium on Neural Networks, 2017: 3506-3513.
[46] Zhou H, Huang M L, Zhang T Y, et al. Emotional chatting machine: Emotional conversation generation with internal and external memory[C]//Proceedings of the National Conference on Artificial Intelligence, 2018: 730-739.
[47] Asghar N, Poupart P, Hoey J, et al. Affective neural response generation[C]//Proceedings of the European Conference on Information Retrieval, 2018: 154-166.
[48] Zhou X D, Wang W Y. MojiTalk: Generating emotional responses at scale[C]//Proceedings of the Meeting of the Association for Computational Linguistics, 2018: 1128-1137.
[49] Pickering M, Garrod S. Toward a mechanistic psychology of dialogue[J]. Behaviors and Brain Sciences, 2004, 27(2): 169-190.
[50] Wu G H,Yuan C X,Wang X J. Finite-to-infinite N-best POMDP for spoken dialogue management[C]//Proceedings of Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data, 2015: 369-380.
[51] Vougiouklis P, Hare J, Simperl E. A neural network approach for knowledge-driven response generation[C]//Proceedings of the 26th International Conference on Computational Linguistics, 2016: 3370-3380.
[52] Dhingra B, Li L, Li X, et al. Towards end-to-end reinforcement learning of dialogue agents for information access[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, 2017: 484-495.
[53] Ghazvininejad M, Brockdtt C, Chang M, et al. A knowledge-grounded neural conversation model[C]//Proceedings of the National Conference on Artificial Intelligence, 2018: 5110-5117.
[54] Zhou H, Young T, Huang M L, et al. Commonsense knowledge aware conversation generation with graph attention[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence, 2018: 4623-4629.
[55] Moon S, Shah P, Kumar A, et al. Open Dial KG: Explainable conversational reasoning with attention-based walkers over knowledge graphs[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 2019: 845-854.
[56] Li K, Bai Z W, Wang X J, et al. A document driven dialogue generation model[C]//Proceedings of Chinese Computational Linguistics, 2019: 508-520.
[57] Li Z K, Niu C, Meng F Y, et al. Incremental transformer with deliberation decoder for document grounded conversations[J]. arXiv preprint arXiv: 1907.08854, 2019.
[58] Su H, Shen X Y, Zhang R Z, et al. Improving multi-turn dialogue modelling with utterance ReWriter[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 2019: 22-31.
[59] Zhou K, Zhang K, Wu Y, et al. Unsupervised context rewriting for open domain conversation[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, 2019: 1834-1844.
[60] He H,Balakrishnan A,Eric M, et al. Learning symmetric collaborative dialogue agents with dynamic knowledge graph embeddings[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, 2017: 1766-1776.
[61] Celikyilmaz A, Bosselut A, He X, et al. Deep communicating agents for abstractive summarization[J]. arXiv preprint arXiv: 1803.10357, 2018.

基金

国家自然科学基金(61433018,61373075)
PDF(1001 KB)

Accesses

Citation

Detail

段落导航
相关文章

/