基于查询路径排序的知识库问答系统

宋鹏程,单丽莉,孙承杰,林磊

PDF(4431 KB)
PDF(4431 KB)
中文信息学报 ›› 2021, Vol. 35 ›› Issue (11) : 109-117,126.
信息检索与问答系统

基于查询路径排序的知识库问答系统

  • 宋鹏程1,单丽莉2,孙承杰2,林磊2
作者信息 +

A Knowledge Base Question Answering System Based on Query Path Ranking

  • SONG Pengcheng1, SHAN Lili2, SUN Chengjie2, LIN Lei2
Author information +
History +

摘要

该文提出了一种基于查询路径排序的知识库问答系统。为了将简单问题与复杂的多约束问题统一处理,同时提高系统的准确性,该系统采用基于LambdaRank算法构建的排序模型,对查询路径按照与问题的相关度大小进行排序,选择与问题相关度最高的路径用于抽取答案。同时,该系统还应用了一种融合方法以提高实体识别的准确性。该文所构建的系统在CCKS2019 KBQA任务与CCKS2020 KBQA任务上均取得了较好的效果。

Abstract

We proposed a new Knowledge Base Question Answering System based on the technology of query path ranking in this paper. The system is able to handle both simple and complex multi-constraint questions. In order to improve the performance of the system, we use Lambda Rank algorithm to sort candidate query paths according to their correlation degree with a question. The candidate path with the highest correlation degree with a question is chosen and used to extract answers. Moreover, the system also adopted a kind of novel fusion method which improved the accuracy of the entity recognition problem. The system has achieved promising results in both CCKS2019 and CCKS2020 KBQA tasks.

关键词

知识库 / 问答系统 / 排序 / 多约束

Key words

knowledge base / Question Answering / rank / multi-constraint

引用本文

导出引用
宋鹏程,单丽莉,孙承杰,林磊. 基于查询路径排序的知识库问答系统. 中文信息学报. 2021, 35(11): 109-117,126
SONG Pengcheng, SHAN Lili, SUN Chengjie, LIN Lei. A Knowledge Base Question Answering System Based on Query Path Ranking. Journal of Chinese Information Processing. 2021, 35(11): 109-117,126

参考文献

[1] Zhou B, Sun C, Lin L, et al. LSTM based question answering for large scale knowledge base[J]. 北京大学学报,2018,54(2): 286-292.
[2] Liu A, Huang Z, Lu H, et al. BB-KBQA: BERT-based knowledge base question answering[C]//Proceedings of China National Conference on Chinese Computational Linguistics, Springer, Cham, 2019: 81-92.
[3] Yih S W, Chang M W, He X, et al. Semantic parsing via staged query graph generation: Question answering with knowledge base[C]//Proceedings of the 53rd Annual Meeting of the Association for Compuational Linguistics and the 7th International Joint Conference on Natual Language Processing, 2015.
[4] Devlin J, Chang M W, Lee K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[J]. arXiv preprint arXiv:1810.04805, 2018.
[5] Joshi M, Chen D, Liu Y, et al. SpanBERT: Improving pre-training by representing and predicting spans[J]. Transactions of the Association for Computational Linguistics, 2020, 8: 64-77.
[6] Reimers N, Gurevych I. Sentence-BERT: Sentence embeddings using siamese bert-networks[J]. arXiv preprint arXiv:1908.10084, 2019.
[7] Bast H, Haussmann E. More accurate question answering on freebase[C]//Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, 2015: 1431-1440.

基金

传播内容认知国家重点实验室课题(A12002)
PDF(4431 KB)

1379

Accesses

0

Citation

Detail

段落导航
相关文章

/