问句复述识别任务旨在判断两个自然问句的语义是否等价。问句的语义理解与交互是解决该任务的关键因素。现有工作通常基于问句的语义级编码,通过融合或交互的方式,抽取问句的浅层语义特征,以此支持复述问句之间的语义计算。但是如果能找到两个问句的相同点和不同点,就可以基于这些信息得到更为准确的判断结果。基于此想法,该文提出了语义正交化匹配方法,将语义正交化引入到问句复述识别任务中。通过语义正交化方法将每个问句拆分为与另一个问句的相似表示和差异表示,这不仅丰富了问句的语义表示,而且实现了问句的多粒度特征语义融合。该文在中文数据集LCQMC和英文数据集Quora上进行实验,证明了语义正交化匹配方法在问句复述识别任务中的有效性。
Abstract
Question paraphrase identification aims to identify whether two natural questions are semantically equivalence, with a core issue of semantic understanding. Current approach usually encoded the sentences into a vector representations and then the two representations are manipulated to give the proof to judge the equivalence. To further capture the the same and different points of the two questions, this paper propose a model to integrate the semantic orthogonal information. In this method, two questions are classified into similar and different representations, which enriches the representations of the questions and realizes the multi-granularity fusion. Experiments have been conducted on two real-world public datasets: LCQMC and Quora, and results demonstrate is the effectiveness of this method.
关键词
复述识别 /
正交化 /
多粒度
{{custom_keyword}} /
Key words
paraphrase identification /
orthogonal /
multi-granularity
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Wu Y, Schuster M, Chen Z, et al. Google′s neural machine translation system: Bridging the gap between human and machine translation[J]. arXiv preprint arXiv:1609.08144, 2016.
[2] Lan W, Xu W. Neural network models for paraphrase identification, semantic textual similarity, natural language inference, and question answering[C]//Proceedings of the 27th International Conference on Computational Linguistics, 2018: 3890-3902.
[3] 文博. 面向智能客服机器人的交互式问句理解研究[D]. 哈尔滨: 哈尔滨工业大学硕士学位论文, 2014.
[4] Kalchbrenner N, Grefenstette E, Blunsom P. A convolutional neural network for modelling sentences[J]. arXiv preprint arXiv:1404.2188, 2017.
[5] Conneau A, Schwenk H, Barrault L, et al. Very deep convolutional networks for text classification[J]. arXiv preprint arXiv:1606.01781, 2016.
[6] Chen Q, Zhu X, Ling Z, et al. Enhanced LSTM for natural language inference[J]. arXiv preprint arXiv:1609.06038, 2016.
[7] Severyn A, Moschitti A. Learning to rank short text pairs with convolutional deep neural networks[C]//Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2015: 373-382.
[8] Wang Z, Hamza W, Florian R. Bilateral multi-perspective matching for natural language sentences[J]. arXiv preprint arXiv:1702.03814, 2017.
[9] Gong Y, Luo H, Zhang J. Natural language inference over interaction space[J]. arXiv preprint arXiv:1709.04348, 2017.
[10] Liu X, Chen Q, Deng C, et al. LCQMC: A large-scale Chinese question matching corpus[C]//Proceedings of the 27th International Conference on Computational Linguistics, 2018: 1952-1962.
[11] Chen Z, Zhang H, Zhang X, et al. Quora question pairs[DS/OL]. [2020-2-28]. https://www.kaggle.com/c/quora-question-pairs.
[12] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 6000-6010.
[13] Zhou P, Shi W, Tian J, et al. Attention-based bidirectional long short-term memory networks for relation classification[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, 2016: 207-212.
[14] Iandola F, Moskewicz M, Karayev S, et al. DenseNet: Implementing efficient convnet descriptor pyramids[J]. arXiv preprint arXiv:1404.1869, 2014.
[15] Pennington J, Socher R, Manning C D. Glove: Global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014: 1532-1543.
[16] Shen L, Zhe Z, Renfen H, et al. Analogical reasoning on Chinese morphological and semantic relations[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, 2018: 138-143.
[17] Bousmalis K, Trigeorgis G, Silberman N, et al. Domain separation networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems, 2016: 343-351.
[18] 刁兴春, 谭明超, 曹建军. 一种融合多种编辑距离的字符串相似度计算方法[J]. 计算器应用研究, 2010, 27(12): 4523-4525.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金(61672367,61672368);国家重点研发计划(2017YFB1002104);江苏省研究生科研与实践创新计划(SJCX19_0926)
{{custom_fund}}