面向中文新闻文本分类的融合网络模型

胡玉兰,赵青杉,陈莉,牛永洁

PDF(1485 KB)
PDF(1485 KB)
中文信息学报 ›› 2021, Vol. 35 ›› Issue (3) : 107-114.
信息抽取与文本挖掘

面向中文新闻文本分类的融合网络模型

  • 胡玉兰1,赵青杉1,陈莉2,牛永洁3
作者信息 +

A Fusion Network for Chinese News Text Classification

  • HU Yulan1, ZHAO Qingshan1, CHEN Li2, NIU Yongjie3
Author information +
History +

摘要

针对神经网络文本分类模型随着层数的加深,在训练过程中发生梯度爆炸或消失以及学习到的词在文本中的语义信息不够全面的问题,该文提出了一种面向中文新闻文本分类的融合网络模型。该模型首先采用密集连接的双向门控循环神经网络学习文本的深层语义表示,然后将前一层学到的文本表示通过最大池化层降低特征词向量维度,同时保留其主要特征,并采用自注意力机制获取文本中更关键的特征信息,最后将所学习到的文本表示拼接后通过分类器对文本进行分类。实验结果表明: 所提出的融合模型在中文新闻长文本分类数据集NLPCC2014上进行实验,其精度、召回率、F1-score指标均优于最新模型AC-BiLSTM。

Abstract

To avoid the issue of gradient disappearance or gradient explosion associated with the deeper layers and better capture the word semantic information, this paper proposed a fusion network for Chinese news text classification. Firstly, this paper applies the densely connected bi-GRU to learn the deep semantic representation. Secondly, it applies max-pooling layer to reduce the key vector dimension. Thirdly, it adopted the self-attention mechanism to capture more important features. Finally, the learning representations are concatenated as the input of the classifier. The experimental results on NLPCC2014 dataset show that the proposed fusion model is better than the latest model AC-BiLSTM.

关键词

文本分类 / 密集连接 / 双向门控循环神经网络 / 最大池化 / 自注意力机制

Key words

text classification / dense connection / bi-direction gated recurrent unit / max pooling / self-attention mechanism

引用本文

导出引用
胡玉兰,赵青杉,陈莉,牛永洁. 面向中文新闻文本分类的融合网络模型. 中文信息学报. 2021, 35(3): 107-114
HU Yulan, ZHAO Qingshan, CHEN Li, NIU Yongjie. A Fusion Network for Chinese News Text Classification. Journal of Chinese Information Processing. 2021, 35(3): 107-114

参考文献

[1] S. Lai, L Xu, K Liu, et al. Recurrent convolutional neural networks for text classification[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence, AAAI, 2015:2267-2273.
[2] F Miao, P Zhang, L Jin et al. Chinese news text classification based on machine learning algorithm[C]//Proceedings of the 10th International Conference on Intelligent Human-Machine systems and Cybernetics. IEEE, 2018, 2: 48-51.
[3] B Altnel, M C Ganiz. A new hybrid semi-supervised algorithm for text classification with class-based semantics[J]. Knowledge-Based Systems, 2016,108: 50-64.
[4] T M Cover, J A Thomas. Elements of information theory[M].NJ: Wiley-Blackwell, 2012: 676-700.
[5] Cao Z, Li S, Liu Y, et al. A novel neural topic model and its supervised extension[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence, AAAI, 2015: 2210-2216.
[6] Srivastava A, Sutton C A. Autoencoding variational inference for topic models[C]//Proceedings of the International Conference on Learning Representations. Toulon, France, 2017: 1326-1338.
[7] Peng M,Xie Q, Zhang Y, et al. Neural sparse topical coding[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Melbourne, Australia, 2018: 2332-2340.
[8] Card D, Tan C, Smith N A, et al. Neural models for documents with metadata[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Iryna Gurevych, Yusuke Miyao, 2018: 2031-2040.
[9] Kim Yoon. Convolutional neural networks for sentence classification[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, 2014: 1746-1751.
[10] P Liu, X Qiu, X Huang. Recurrent neural network for text classification with multi-task learning[J/OL]. arXiv preprint arXiv: 1605.05101, 2016.
[11] Zichao Yang, Diyi Yang, Chris D, et al. Hierarchical attention networks for document classification[C]//Proceedings of the 15th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2016: 1480-1489.
[12] Blei D M, Ng A Y, Jordan M I. Latent Dirichlet allocation[J]. Journal of Machine Learning Research, 2012, 3: 993-1022.
[13] Yan X, Guo J, Lan Y, et al. A biterm topic model for short texts[C]//Proceedings of the 22nd International Conference on World Wide Web. Rio de Janeiro, Brazil, 2013: 1445-1456.
[14] Lau J H, Baldwin T, Cohn T. Topically driven neural language model[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Vancouver, Canada, 2017: 355-365.
[15] Wang W, Gan Z, et al. Topic compositional neural language model[C]//Proceedings of the 21st International Conference on Artificial Intelligence and Statistics. Lanzarote, Spain, 2018: 356-365.
[16] 吴小华,陈莉,魏甜甜,等. 基于Self-Attention和Bi-LSTM的中文短文本情感分析[J]. 中文信息学报, 2019, 33 (06): 100-107.
[17] Johnson R, Zhang T. Deep pyramid convolutional neural networks for text categorization[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Vancouver, Canada,2017: 562-570.
[18] Conneau A, Schwenk H, Barrault L, et al. Very deep convolutional networks for text classification[C]//Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, 2016: 1107-1116.
[19] Huang G, Liu Z,Maaten V D L, et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2261-2269.
[20] Cho K, Merrienboer B V, Gulceher C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. Doha: Association for Computational Linguistics, 2014: 1724-1734.
[21] Max Hovy E. End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF[J/OL]. arxiv Preprint arXiv, 2016: 1603.01354.
[22] Liangchen Luo, Yuanhao Xiong, et al. Adaptive gradient methods with dynamicc bound of learning rate[C]//Proceedings of the 7th International Conference on Learning Representations, 2019: 1-21.
[23] M Yang, W Tu, J Wang, et al. Attention-based LSTM for target-dependent sentiment classification[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence, AAAI press, San Francisco, CA, United states, 2017: 5013-5014.
[24] Gang Liu, Jiabao Guo. Bidirectional LSTM with attention mechanism and convolutional layer for text classification[J]. Neurocomputing, 2019, 337: 325-338.

基金

国家重点研发项目(2017YFB402103-1)
PDF(1485 KB)

1148

Accesses

0

Citation

Detail

段落导航
相关文章

/