在评论情感分析的研究中,和评论相关的用户与产品信息对于提高情感分类的准确率有很大的帮助。为了能够有效地利用产品和用户信息,并构建产品和用户信息与评论之间的关联,该文提出一种基于图网络的模型,将产品与用户信息和评论之间的关系构建为一个图,并基于图卷积网络模型学习产品与用户信息对评论的影响,从而提升评论情感分类的准确率。在Yelp2013数据集上进行实验,实验结果表明,该模型能有效地提高评论的情感分类准确率。
Abstract
In review sentiment analysis, the user and product information related to the review are of great help to improve the accuracy. This paper proposes a graph network-based model to capture the relationship between products and user information and reviews via a graph. It learns the impact of product and user information on reviews based on the graph convolutional network model. Experiments on the Yelp2013 dataset show that the model can effectively improve the accuracy of emotion classification for user comments.
关键词
图卷积 /
神经网络 /
情感分类
{{custom_keyword}} /
Key words
graph convolution /
neural network /
sentiment classification
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王洪伟,郑丽娟,尹裴,等.在线评论的情感极性分类研究综述[J].情报科学, 2012, 30(008): 1263-1271, 1276.
[2] 谢法举,刘臣,唐莉.在线评论情感分析研究综述[J].软件导刊, 2018, 17(002): 1-4, 7.
[3] Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J].Proceedings of the IEEE, 1998,86(11): 2278-2324.
[4] Kim Y. Convolutional neural networks for sentence classification[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, 2014: 1746-1751.
[5] Tang D, Qin B, Liu T. Document modeling with gated recurrent neural network for sentiment classification[C]//Proceedings of the 2015 Conference on Empirical Methods in natural Language Processing, 2015: 1422-1432.
[6] Wang X, Liu Y, Sun C, et al. Predicting polarities of tweets by composing word embeddings with long short-term memory[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), 2015, 1: 1343-1353.
[7] Hochreiter S, Schmidhuber J. Long short-term memory[J].Neural Computation, 1997, 9(8): 1735-1780.
[8] Tai K S, Socher R, Manning C D.Improved semantic representations from tree-structured long short-term memory networks[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics, 2015: 1556-1566.
[9] Mnih V, Heess N, Ggaver A. Recurrent models of visual attention[J].Advances in Neural Information Processing Systems, 2014(3): 2204-2212.
[10] Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate[C]//Proceedings of the 3rd International Conference on Learning Representations, 2015: 1-15.
[11] Louong M, Manning C D.Effective approaches to attention-based neural machine translation[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, 2015: 1412-1421.
[12] Yang Z, Yang D, Dyer C, et al. Hierarchical attention networks for document classification[C]//Proceedings of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2017: 1480-1489.
[13] Gui L, Zhou Y, Xu R, et al. Learning representations from heterogeneous network for sentiment classification of product reviews[J].Knowledge-Based Systems, 2017, 124: 34-45.
[14] Tang D, Qin B, Liu T. Learning semantic representations of users and products for document level sentiment classification[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), 2015: 1014-1023.
[15] Chen H, Sun M, TU C, et al. Neural sentiment classification with user and product attention[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 2016: 1650-1659.
[16] Ma D, LI S, Zhang X, et al. Cascading multiway attentions for document-level sentiment classification[C]//Proceedings of the 8th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), 2017: 634-643.
[17] Dou Z Y. Capturing user and product information for document level sentiment analysis with deep memory network[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, 2017: 521-526.
[18] Zou Y, Gui T, Zhang Q, et al. A lexicon-based supervised attention model for neural sentiment analysis[C]//Proceedings of the 27th International Conference on Computational Linguistics, 2018: 868-877.
[19] Wu Z, Dai X Y, Yin C, et al. Improving review representations with user attention and product attention for sentiment classification[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence, 2018.
[20] Kim J, Amplayo R K, Lee K, et al. Categorical metadata representation for customized text classification[J]. Transactions of the Association for Computational Linguistics, 2019, 7: 201-215.
[21] Kipf T N, Welling M.Semi-supervised classification with graph convolutional networks[J/OL]. arXiv preprint arXiv: 1609.02907, 2016.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金青年科学基金(61806137,61702518);江苏省高等学校自然科学研究面上项目(18KJB520043)
{{custom_fund}}