CHIP2019评测任务1概述:临床术语标准化任务

黄源航,焦晓康,汤步洲,陈清财,闫峻,

PDF(1135 KB)
PDF(1135 KB)
中文信息学报 ›› 2021, Vol. 35 ›› Issue (3) : 94-99.
信息抽取与文本挖掘

CHIP2019评测任务1概述:临床术语标准化任务

  • 黄源航1,焦晓康2,汤步洲1,3,陈清财1,3,闫峻2,
作者信息 +

Overview of the CHIP2019 Shared Task Track1: Normalization of Chinese Clinical Terminology

  • HUANG Yuanhang1, JIAO Xiaokang2, TANG Buzhou1,3, CHEN Qingcai1,3, YAN Jun2,
Author information +
History +

摘要

第五届中国健康信息处理会议(China Conference on Health Information Processing, CHIP2019)组织了中文临床医疗信息处理方面的三个评测任务,其中任务1为临床术语标准化任务。该任务的主要目标是对中文电子病历中挖掘出的真实手术实体进行语义标准化。评测数据集中所有手术原词均来自于真实医疗数据,并以《ICD9-2017协和临床版》手术词表为标准进行了标注。共有56支队伍报名参加了评测,最终有20支队伍提交了47组结果。该评测以准确率作为最终评估标准,提交结果中最高准确率达到94.83%。

Abstract

The 5th China Conference on Health Information Processing held a shared task including three tracks on Chinese clinical medical information processing. The first track is normalization of Chinese clinical terminology that assigns standard terminologies to surgical entities extracted from Chinese electronic medical records. All surgical entities in the Track1 dataset were collected from real medical data and annotated with standard surgical terminologies of "ICD9-2017 Clinical Edition". A total of 56 teams signed up for the track, and eventually 20 teams submitted 47 system runs. Accuracy is used to measure the performances of all systems, and the highest accuracy of all submitted system runs reached 0.9483.

关键词

中国健康信息处理会议 / 临床术语标准化 / 自然语言处理

Key words

China Conference on Health Information Processing / normalization of Chinese clinical terminology / natural language processing

引用本文

导出引用
黄源航,焦晓康,汤步洲,陈清财,闫峻,. CHIP2019评测任务1概述:临床术语标准化任务. 中文信息学报. 2021, 35(3): 94-99
HUANG Yuanhang, JIAO Xiaokang, TANG Buzhou, CHEN Qingcai, YAN Jun,. Overview of the CHIP2019 Shared Task Track1: Normalization of Chinese Clinical Terminology. Journal of Chinese Information Processing. 2021, 35(3): 94-99

参考文献

[1] Aronson A R. Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program[C]//Proceedings of the American Medical Informatics Association Symposium, 2001: 17-21.
[2] Leaman R, Islamaj Dogan R, Lu Z. DNorm: Disease name normalization with pairwise learning to rank[J]. Bioinformatics, 2013, 29(22): 2909-2917.
[3] Limsopatham N, Collier N. Normalising medical concepts in social media texts by learning semantic representation[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, 2016: 1014-1023.
[4] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[5] Neveol A, Robert A, Anderson R, et al. CLEF eHealth 2017 multilingual information extraction task overview: ICD10 coding of death certificates in English and French[C]//Proceedings of the Workshop of the Cross Language Evaluation Forum, 2017:1-17.
[6] Neveol A, Robert A, Grippo F, et al. CLEF eHealth 2018 multilingual information extraction task overview: ICD10 coding of death certificates in French, Hungarian and Italian[C]//Proceedings of the Workshop of the Cross Language Evaluation Forum, 2018:1-18.
[7] Dorendahl A, Leich N, Hummel B, et al. Overview of the CLEF eHealth 2019 multilingual information extraction[C]//Proceedings of the Workshop of the Cross Language Evaluation Forum, 2019: 1-9.
[8] Weissenbacher D, Sarker A, Magge A, et al. Overview of the fourth social media mining for health (SMM4H) shared tasks at ACL 2019[C]//Proceedings of the 4th Social Media Mining for Health Applications (#SMM4H) Workshop & Shared Task, 2019: 21-30.
[9] Agirre A G, Marimon M, intxaurrondo A, et al. Pharmaconer: Pharmacological substances, compounds and proteins named entity recognition track[C]//Proceedings of the 5th Workshop on BioNLP Open Shared Tasks, 2019: 1-10.
[10] Devlin J, Chang M W, Lee K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics, 2019: 4171-4186.
[11] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 5998-6008.
[12] Sutskever I, Vinyals O, Le Q V. Sequence to sequence learning with neural networks[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems, 2014, 27: 3104-3112.

基金

国家自然科学基金(61876052);国家自然科学联合重点基金(U1813215);广东省自然科学基金(2020KZDZX1222);深圳市基础研究项目(JCYJ20190806112210067)
PDF(1135 KB)

2187

Accesses

0

Citation

Detail

段落导航
相关文章

/