智能推荐型对话系统通过丰富的交互方式与用户进行交流,首先收集用户兴趣和偏好,然后主动地向用户推荐其感兴趣的内容。因此,该类系统通常涵盖多种对话类型,如问答、闲聊、推荐等。目前的研究采用流水线模型,存在误差累积的问题。该文提出基于Transformer的具有知识感知能力的对话生成模型完成面向推荐的多类型对话任务。该模型使用Transformer解码器隐式地学习对话目标路径并生成回复。此外,该文通过引入知识编码器和基于知识词表的Copy机制,提升模型对知识的感知能力。在DuRecDial数据集上的实验表明,提出的模型和基线模型相比在自动评估中取得了显著的性能提升,其中F1、BLEU与Distinct分别提升了59.08%、110%、66.14%。该模型在2020语言与智能技术竞赛: 面向推荐的对话任务中获得第三名。
Abstract
An intelligent recommended dialogue system communicates with users in rich interactive ways, which usually covers multiple types of dialogue, such as question answering, chit-chat, recommendation dialogs, etc. In contrast to the current pipeline model, we propose a knowledge-aware dialogue generation model based on Transformer to accomplish conversational recommendation over multi-type dialog task. We use a Transformer decoder to implicitly learn dialogue goal path and generate a reply. Additionally, we introduce a knowledge encoder and a copy mechanism to enhance the model's ability to perceive knowledge. Experimental results on the DuRecDial dataset show that the proposed model achieves a significant improvement in terms of F1, BLEU and Distinct over the baseline models by 59.08%, 110.00%, 66.14%, respectively. Our model ranked at the third place in 2020 Language and Intelligent Technology Competition: Conversational Recommendation Task.
关键词
对话推荐 /
多类型对话 /
外部知识
{{custom_keyword}} /
Key words
conversational recommendation /
multi-type dialogue /
outside knowledge
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Li R, Kahou S E, Schulz H, et al. Towards deep conversational recommendations[C]//Proceedings of Advances in Neural Information Processing Systems,2018: 9725-9735.
[2] Christakopoulou K, Radlinski F, Hofmann K. Towards conversational recommender sytems[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2016: 815-824.
[3] Reschke K, Vogel A, Jurafsky D. Generating recommendation dialogs by extracting information from user reviews[C]//Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, 2013: 499-504.
[4] Moon S, Shah P, Kumar A, et al. Opendialkg: Explainable conversational reasoning with attention-based walks over knowledge graphs[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 2019 845-854.
[5] Ram A, Prasad R, Khatri C, et al. Conversational AI: The science behind the alexa prize[J]. arXiv preprint arXiv: 1801.03604, 2018.
[6] Wang Z, Chen H, Wang G, et al. Policy learning for domain selection in an extensible multi-domain spoken dialogue system[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing(EMNLP),2014: 57-67.
[7] Zhou L, Gao J, Li D, et al. The design and implementation of XiaoIce, an empathetic social chatbot[J]. Computational Linguistics, 2020, 46(1): 53-93.
[8] Liu Z, Wang H, Niu Z Y, et al. Towards conversational recommendation over multi-type dialogs[J]. arXiv preprint arXiv: 2005.03954, 2020.
[9] Sun Y, Zhang Y. Conversational recommender system[C]//Proceedings of the 41st International ACM SIGIR Conference on Research and Development in Information Retrieval, 2018: 235-244.
[10] Zhang Y, Chen X, Ai Q, et al. Towards conversational search and recommendation: System ask, user respond[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management, 2018: 177-186.
[11] Chen Q, Lin J, Zhang Y, et al. Towards knowledge-based recommender dialog system[J]. arXiv preprint arXiv: 1908.05391, 2019.
[12] Kang D, Balakrishnan A, Shah P, et al. Recommendation as a communication game: Self-supervised bot-play for goal-oriented dialogue[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 2019: 1951-1961.
[13] Sutskever I, Vinyals O, Le Q V. Sequence to sequence learning with neural networks [C]//Proceedings of the 28th Annual Conference on Neural Information Processing Systems (NIPS 2014), 2014: 3104-3112.
[14] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]//Proceedings of Advances in Neural Information Processing Systems, 2017: 5998-6008.
[15] Wolf T, Sanh V, Chaumond J, et al. Transfertransfo: A transfer learning approach for neural network based conversational agents[J]. arXiv preprint arXiv: 1901.08149, 2019.
[16] Budzianowski P, Vulic' I. Hello, it's GPT-2-how can I help you? towards the use of pretrained language models for task-oriented dialogue systems[J]. arXiv preprint arXiv: 1907.05774, 2019.
[17] Ghazvininejad M, Brockett C, Chang M W, et al. A knowledge-grounded neural conversation model[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2018.
[18] Lian R, Xie M, Wang F, et al. Learning to select knowledge for response generation in dialog systems[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, 2019: 5081-5087.
[19] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[20] See A, Liu P J, Manning C D. Get to the point: Summarization with pointer-generator net-works[J]. arXiv preprint arXiv: 1704.04368, 2017.
[21] Papineni K, Roukos S, Ward T, et al. BLEU: A method for automatic evaluation of machine translation[C]//Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, 2002: 311-318.
[22] Li J, Galley M, Brockett C, et al. A Diversity promoting objective function for neural conversation models[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies,2016: 110-119.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}