性别偏见是社会学研究的热点。近年来,机器学习算法从数据中学到偏见,使之得到更广泛的关注,但目前尚无基于语料库的方法对文本数据中职业性别偏见的研究。该文基于标记理论,利用BCC和DCC语料库,从共时和历时两个层面考察了63个职业的性别无意识偏见现象。首先,以调查问卷的形式调研了不同性别和不同年龄段的人群对63个职业的性别倾向,发现和BCC语料库中多领域的职业性别偏见度呈显著的正相关关系。然后从共时的角度,利用BCC语料库中不同领域的语料,以及DCC语料库中2018年全国31个省级行政单位(不含港澳台地区)的报纸语料,发现从口语至书面语语体,大部分职业表现出对女性的性别偏见逐渐升高,且不同地区对职业的性别偏见存在差异。最后,从历时的角度,利用DCC语料库2005至2018年的报纸语料进行统计分析,发现职业性别无意识偏见现象随着时间的推移,呈现总体弱化趋势。
Abstract
Gender bias is a hot topic in sociology. In recent years, machine learning algorithms have learnt bias from data, which have arouse much more attention on this topic. Based on the markedness theory, this paper examines the unconscious gender bias of 63 occupations in BCC and DCC corpora from both synchronic and diachronic perspectives. Firstly, the gender preference of 63 occupations among different age and gender groups is investigated via questionnaires. There is a significant positive correlation between the questionnaire and the occupation gender bias word frequency indicators in the BCC corpus. Then, from the perspective of synchronic study, most of the occupations are found with a growing gender bias against women from the corpus of different fields in the BCC corpus, and the newspaper texts of the 31 provincial administrative units in the DCC corpus in 2018, There also are differences in occupational gender bias in different regions. Finally, from a diachronic perspective, it is found that the occupational gender unconscious bias phenomenon shows an overall weakening trend form the DCC corpus from 2005 to 2018 newspaper texts for statistical analysis.
关键词
语料库 /
职业 /
性别 /
无意识偏见 /
标记理论
{{custom_keyword}} /
Key words
corpus /
occupation /
gender /
unconscious bias /
markedness theory
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 陈国明.跨文化交际学[M].上海: 华东师范大学出版社,2009: 55-58.
[2] 戴炜栋.言语性别差异分析综述[J].外国语(上海外国语学院学报),1983,28(06): 3-7.
[3] 李经伟.西方语言与性别研究述评[J].解放军外国语学院学报,2001,24(1): 11-15.
[4] 史耕山,张尚莲.国内语言性别差异研究概述[J].外语教学,2006,27(03): 24-27.
[5] Simaki V, Aravantinou C, Mporas I, et al. Sociolinguistic features for author gender identification: From qualitative evidence to quantitative analysis[J]. Journal of Quantitative Linguistics, 2017,24(1): 65-84.
[6] Hellinger M, Motschenbacher H. Gender across languages[M]. Amsterdam: John Benjamins Publishing Company, 2015: 1-311.
[7] Sapir E. The status of linguistics as a science[J]. Language, 1929,5(4): 207-214.
[8] Whorf B L, Carroll J B. Language, thought, and reality[M]. Massachusetts: The MIT Press, 1956: 23-33.
[9] James Z, Londa S. AI can be sexist and racist—It's time to make it fair[J]. Nature, 2018, 12(559): 324-326.
[10] Richards J, et al. Longman dictionary of applied linguistics[M]. London: Longman, 1985: 1-5.
[11] 陆震.妇女就业领域诸问题之我见[J].妇女研究论丛,1994,3: 16-20.
[12] 云卉.中国女性就业性别歧视研究[D].哈尔滨: 哈尔滨工程大学硕士学位论文,2007.
[13] 金窗爱.中国当代女性就业问题研究[D].长春: 东北师范大学博士学位论文,2012.
[14] 毛海强.我国就业歧视研究[D].武汉: 武汉科技大学硕士学位论文,2005.
[15] 季素萍.大学生就业中性别歧视: 现象及影响因素[D].南京: 南京理工大学硕士学位论文,2006.
[16] 陈永伟,周羿.职业选择、性别歧视和工资差异—对我国城市劳动力市场的分析[J].劳动经济研究,2014,2(01): 49-75.
[17] 曹娜.从性别刻板印象的视角解读女性研究生求职遭遇性别歧视[D].长沙: 湖南师范大学硕士学位论文,2007.
[18] 张成刚,杨伟国.中国劳动力市场转型阶段职业性别隔离的新测度—基于K-M分解方法[J].人口与经济,2018,231(06): 53-63.
[19] 任志敏.中国男女收入差距的分析[D].北京: 首都经济贸易大学硕士学位论文,2018.
[20] 朱懂理.试论我国消除就业与职业歧视立法[D].上海: 华东政法学院硕士学位论文,2004.
[21] 郭亦彦.《消除就业和职业歧视公约》实施研究[D].长沙: 湖南大学硕士学位论文,2009.
[22] 刘冬.论我国女性就业歧视问题及法律对策[D].成都: 西南财经大学硕士学位论文,2010.
[23] 韩红颍.我国职场性别歧视的法律应对研究[D].无锡: 江南大学硕士学位论文,2011.
[24] 游晓瑜.性别歧视的劳动法规制研究[D].上海: 上海师范大学硕士学位论文,2018.
[25] White M J, White G B. Implicit and explicit occupational gender stereotypes[J]. Sex Roles, 2006, 55(3-4): 259-266.
[26] Ramaci T, Pellerone M, Ledda C, et al. Gender stereotypes in occupational choice: A cross-sectional study on a group of Italian adolescents[J]. Psychology Research and Behavior Management, 2017,(10): 155-156.
[27] 苏晓玉.谈谈英语词汇中的女性后缀[J].解放军外国语学院学报,2000,23(03): 24-25,54.
[28] 苗兴伟.从标记理论看英语中的性别歧视[J].四川外语学院学报,1995,3: 51-55.
[29] 韦晓曙,陈佳敏.英语职业称谓性别歧视语及应对策略[J].科教导刊(上旬刊),2017,19(07): 146-148.
[30] 张莉萍. 称谓语性别差异的社会语言学研究[D].北京: 中央民族大学博士学位论文,2007.
[31] Baker, P. Using corpora to analyze gender[M]. London: A & C Black, 2014: 19-176.
[32] 许家金,李潇辰.基于BNC语料库的男性女性家庭角色话语建构研究[J].解放军外国语学院学报,2014,37(01): 10-17,30,159.
[33] 王显志.英汉语性别歧视现象的对比研究[D].北京: 中央民族大学博士学位论文,2010.
[34] John P, Penny P, Ernest J. et al. Big data: Seizing opportunities and preserving values[R]. Washington D.C.: Executive Office of the President, 2014.
[35] Durme B V. Extracting implicit knowledge from text[D]. Rochester: PhD Dissertation of University of Rochester, 2009.
[36] Zhao J, Wang T, Yatskar M, et al. Men also like shopping: Reducing gender bias amplification using corpus-level constraints[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Copenhagen: 2017 Association for Computational Linguistics, 2017: 2979-2989.
[37] 荀恩东,饶高琦,肖晓悦,等.大数据背景下BCC语料库的研制[J].语料库语言学,2016,3 (01): 93-109,118.
[38] Holland J L. A theory of vocational choice[J]. Theory and Practice of Vocational Guidance, 1968, 6(1): 35-47.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
教育部人文社会科学研究规划基金(18YJA740030);北京语言大学院级项目(中央高校基本科研业务费专项资金)(19YJ040003)
{{custom_fund}}