基于贝叶斯网络的实体属性补全

佘琪星,姜天文,刘铭,秦兵

PDF(5294 KB)
PDF(5294 KB)
中文信息学报 ›› 2021, Vol. 35 ›› Issue (5) : 55-62.
知识表示与知识获取

基于贝叶斯网络的实体属性补全

  • 佘琪星1,姜天文1,刘铭1,2,秦兵1,2
作者信息 +

Entity Attribute Completion Based on Bayesian Network

  • SHE Qixing1, JIANG Tianwen1, LIU Ming1,2, QIN Bing1,2
Author information +
History +

摘要

属性是实体的重要组成部分,因此实体属性的获取是知识图谱构建的关键步骤。由哈尔滨工业大学社会计算与信息检索研究中心推出的开放域中文知识图谱《大词林》是通过从文本中自动挖掘实体及实体间的关系构建而成的,因此为《大词林》中缺少属性的实体添加属性也成为必须研究的问题之一。该文提出了一种解决方案: 基于贝叶斯网络的概率统计模型,通过上位词概念与属性之间的依赖关系和实体与上位词概念的依赖关系来自动地为《大词林》中没有属性的实体添加属性,并与相似度计算方法对比证明了其有效性,可大规模提高《大词林》的属性覆盖率。

Abstract

Attribute is an important part of entity, and the acquisition of entity attribute is a key step of knowledge graph construction. To complete the attributes related to entities in open domain Chinese knowledge graph "BigCilin",this paper proposes to employ the dependency relationships between 1) hypernym conception and attribute, and 2) entity and hypernym conception to add attributes to entities based on the Bayesian network. Compared with similarity measures, this method are proved for its validity in terms of significantly improving the attribute coverage of "BigCilin".

关键词

属性补全 / 知识图谱 / 大词林

Key words

attribute completion / knowledge graph / BigCilin

引用本文

导出引用
佘琪星,姜天文,刘铭,秦兵. 基于贝叶斯网络的实体属性补全. 中文信息学报. 2021, 35(5): 55-62
SHE Qixing, JIANG Tianwen, LIU Ming, QIN Bing. Entity Attribute Completion Based on Bayesian Network. Journal of Chinese Information Processing. 2021, 35(5): 55-62

参考文献

[1] Suchanek F M, Kasneci G, Weikum G. YAGO: A core of semantic knowledge[C]//Proceedings of the 16th International Conference on World Wide Web. ACM, 2007: 697-706.
[2] Miller G A. WordNet: A lexical database for English[J]. Communications of the ACM, 1995, 38(11): 39-41.
[3] Lehmann J, Isele R, Jakob M, et al. DBpedia: A large-scale, multilingual knowledge base extracted from Wikipedia[J]. Semantic Web, 2015, 6(2): 167-195.
[4] Bollacker K, Evans C, Paritosh P, et al. FreeBase: A collaboratively created graph database for structuring human knowledge[C]//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data. ACM, 2008: 1247-1250.
[5] Vrandecic' D, Krtzsch M. Wikidata: A free collaborative knowledge base[J]. Communications of the ACM, 2014,57(10): 78-85.
[6] Niu X, Sun X, Wang H, et al. Zhishi. me weaving Chinese linking open data[C]//Proceedings of International Semantic Web Conference. Springer, Berlin, Heidelberg, 2011: 205-220.
[7] Wang Z, Li J, Wang Z, et al. XLore: A large-scale English-Chinese bilingual knowledge graph[C]//Proceedings of International Semantic Web Conference, 2013, 1035: 121-124.
[8] Xu B, Xu Y, Liang J, et al. CN-dbpedia: A never-ending Chinese knowledge extraction system[C]//Proceedings of International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems. Springer, Cham, 2017: 428-438.
[9] Yu D, Ji H. Unsupervised person slot filling based on graph mining[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, 2016: 44-53.
[10] Huang L, Sil A, Ji H, et al. Improving slot filling performance with attentive neural networks on dependency structures[J]. arXiv preprint arXiv: 1707.01075, 2017.
[11] Zheng G, Mukherjee S, Dong X L, et al. Opentag: Open attribute value extraction from product profiles[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2018: 1049-1058.
[12] Fu R, Qin B, Liu T. Exploiting multiple sources for open-domain hypernym discovery[C]//Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, 2013: 1224-1234.
[13] Pearl J. Bayesian networks[M]. The Hardbook of Brain Theory and Neural Networks, NY: Mitpress, 1998: 149-153.
[14] Qiu Y, Li H, Li S, et al. Revisiting correlations between intrinsic and extrinsic evaluations of word embeddings[M]. Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data. Springer, Cham, 2018: 209-221.

基金

科技创新2030—“新一代人工智能”科技部重大项目(2018AAA0101901);国家自然科学基金(61772156,61976073);深圳市基础研究项目(JCYJ20180507183527919)
PDF(5294 KB)

Accesses

Citation

Detail

段落导航
相关文章

/