融合词义信息的文本蕴涵识别方法

杜倩龙,宗成庆,苏克毅

PDF(1422 KB)
PDF(1422 KB)
中文信息学报 ›› 2021, Vol. 35 ›› Issue (7) : 30-40.
语言分析与计算

融合词义信息的文本蕴涵识别方法

  • 杜倩龙1,2,宗成庆1,2,苏克毅3
作者信息 +

Incorporating Word Sense Information for Recognizing Textual Entailment

  • DU Qianlong1,2, ZONG Chengqing1,2, SU Keh-Yih3
Author information +
History +

摘要

文本蕴涵识别是对两个文本之间语义关系的有向推理,而词汇的词义对理解文本的语义以及推理文本之间的语义蕴涵关系有着重要作用。因此,为了有效利用词汇的词义信息推断文本之间的语义蕴涵关系,该文提出一种融合词义信息的文本蕴涵识别方法。该方法首次提出将原始的词汇转化为对应的目标词义,然后利用词汇的词义信息改善文本的语义表示和文本间语义关系的推理。实验表明,该文所提出的方法可以有效改善文本间语义关系的推理,从而提升文本蕴涵识别的准确率。

Abstract

The task of recognizing textual entailment detects whether a given text passage can be inferred from another passage. During inference process, the sense of each word plays an important role in understanding the meaning of the passages and predicting the relationship of the passage-pair. In this paper, we propose a novel approach to incorporate word sense information into the inference mechanism. We first use a word sense disambiguation system to generate the sense of each content word, and then use the information of word sense to improve the representations of the passages and enhance the capability of predicting the entailment relationship of the passage-pair. Experimental results show that our proposed approach can improve the performance effectively.

关键词

关键词:词义推断 / 文本蕴涵识别 / 语义推理

Key words

word sense disambiguation / recognizing textual entailment / semantic inference

引用本文

导出引用
杜倩龙,宗成庆,苏克毅. 融合词义信息的文本蕴涵识别方法. 中文信息学报. 2021, 35(7): 30-40
DU Qianlong, ZONG Chengqing, SU Keh-Yih. Incorporating Word Sense Information for Recognizing Textual Entailment. Journal of Chinese Information Processing. 2021, 35(7): 30-40

参考文献

[1] 王宝鑫,郑德权,王晓雪,等.基于文本蕴含的选择类问题解答技术研究[J]. 北京大学学报(自然科学版),2016, 52(1),134-140.
[2] Li H R, Zhu J N, Zhang J J, et al. Ensure the correctness of the summary: Incorporate entailment knowledge into abstractive sentence summarization[C]//Proceedings of the 27th International Conference on Computational Linguistic, 2018:1430-1441.
[3] Dagan I,Glickman O, Magnini B. The Pascal recognising textual entailment challenge[C]//Proceedings of the International Conference on Machine Learning Challenges: Evaluating Predictive Uncertainty Visual Object Classification, and Recognizing Textual Entailment, 2005: 177-190.
[4] Marelli M, Bentivogli L, Baroni M,et al. Semeval-2014 task1: Evaluation of compositional distributional semantic models on full sentences through semantic relatedness and textual entailment[C]//Proceedings of the 8th International Workshop on Semantic Evaluation, 2014:1-8.
[5] 刘茂福,李妍,姬东鸿.基于事件语义特征的中文文本蕴含识别[J]. 中文信息学报, 2013, 27(5):129-137.
[6] 张晗,盛雅琦,吕晨,等.基于短文本隐含语义特征的文本蕴涵识别[J]. 中文信息学报, 2016, 30(3):163-171.
[7] Bowman S R, Angeli G, Potts C, et al. A large annotated corpus for learning natural language inference[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, 2015: 632-642.
[8] Williams A, Nangia N, Bowman S R. A broad-coverage challenge corpus for sentence understanding through inference[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics, 2018: 1112-1122.
[9] Nie Y, Bansal M. Shortcut-stacked sentence encodersfor multi-domain inference[C]//Proceedings of the 2nd Workshop on Evaluating Vector Space Representations for NLP. Copenhagen, Denmark: Association for Computational Linguistics, 2017:41-45.
[10] Mou L L, Li G, Zhang L,et al. Convolutional neural networks over tree structures for programming language processing[C]//Proceedings of the 30th AAAI Conference on Artifical Intelligence, 2016:1287-1293.
[11] Parikh A, Tackstrom O, Das D, et al. A decomposable attention model for natural language inference[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 2016: 2249-2255.
[12] Chen Q, Zhu X, Ling Z H,et al. Enhanced LSTM for natural language inference[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, 2017: 1657-1668.
[13] Chen Q, Zhu X, Ling ZH,et al. Neural natural language inference models enhanced with external knowledge[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Melbourne, Australia: Association for Computational Linguistics, 2018: 2406-2417.
[14] Tay Y, Tuan L A, Hui S C. A compare propagate architecture with alignment factorization for natural language inference[C]//Proceedings of the CoRR, 2018.
[15] Rocktschel T, Grefenstette E, Hermann K M,et al. Reasoning about entailment with neural attention[C]//Proceedings of the International Conference on Learning Representations (ICLR),2016.
[16] Peters M E, Neumann M, Iyyer M,et al. Deep contextualized word representations[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistic, 2018:2227-2237.
[17] Wang Z G, Hamza W, Florian R. Bilateral multi-perspective matching for natural language sentences[C]//Proceedings of the International Joint Conference on Artificial Intelligence, 2017: 4144-4150.
[18] Miller G A. WordNet: A lexical database for English[J]. Communications of the ACM, 1995, 38(11):39-41.
[19] Vaswani A, Shazeer N, Parmar N,et al. Attention is all you need[C]//Proceedings of the 31st International Joint Conference or Neural Information Processing Systems, 2017:5998-6008.
[20] Devlin J, Chang M, Lee K,et al. BERT: Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics, 2019: 4171-4186.
[21] Pennington J, Socher R, Manning C D. GloVe: Global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, 2014: 1532-1543.
[22] Chen D, Fisch A, Weston J,et al. Reading Wikipedia to answer open-domain questions[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, 2017: 1870-1879.
[23] Du Q L, Zong C Q, Su K Y. Integrating structural context with local context for disambiguation word sense[C]//Proceedings of the 5th Conference On Natural Language Processing and Chinese Computing & The 24th International Conference On Computer Processing of Oriental Languages, 2016: 3-15.
[24] Wang S, Jiang J . Learning natural language inference with LSTM[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2016.
[25] Du Q L, Zong C Q, Su K Y. Adopting the word-pair-dependency-triplets with individual comparison for natural language inference[C]//Proceedings of the 27th International Conference on Computational Linguistics (COLING), Santa Fe, New-Mexico, USA, 2018: 414-425.
[26] Sha L, Chang B B, Sui Z F,et al. Reading and thinking: Reread LSTM unit for textual entailment recognition[C]//Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics, 2016: 2870-2879.
[27] Gong Y C, Luo H, Zhang J. Natural language inference over interaction space[C]//Proceedings of the International Conference on Learning Representations, 2018.
[28] Ghaeini R, Hasan S A, Datla V,et al. DR-BiLSTM: Dependent reading bidirectional LSTM for natural language inference[C]//Proceedings of the NAACL-HLT, 2018: 1460-1469.
[29] Chen Q, Zhu X D, Ling Z H, et al. Recurrent neural network-based sentence encoder with gated attention for natural language inference[C]//Proceedings of the 2nd Workshop on Evaluating Vector-Space Representation for NLP, 2017: 36-40.
[30] Balazs J A, Marrese-Taylor E, Loyola P,et al. Reining raw sentence representations for textual entailment recognition via attention[C]//Proceedings of the 2nd Workshop on Evaluating Vector-Space Representations for NLP, 2017: 51-55.

基金

国家自然科学基金(U1836221)
PDF(1422 KB)

1257

Accesses

0

Citation

Detail

段落导航
相关文章

/