基于小样本学习的个性化Hashtag推荐

曾兰君,彭敏龙,刘雅琦,许辽萨,魏忠钰,黄萱菁

PDF(3578 KB)
PDF(3578 KB)
中文信息学报 ›› 2021, Vol. 35 ›› Issue (9) : 102-112.
信息检索与问答系统

基于小样本学习的个性化Hashtag推荐

  • 曾兰君1,彭敏龙1,刘雅琦2,许辽萨2,魏忠钰3,黄萱菁1
作者信息 +

Personalized Hashtag Recommendation Using Few-shot Learning

  • ZENG Lanjun1, PENG Minlong1, LIU Yaqi2, XU Liaosa2, WEI Zhongyu3, HUANG Xuanjing1
Author information +
History +

摘要

近年来,Hashtag推荐任务吸引了很多研究者的关注。目前,大部分深度学习方法把这个任务看作是一个多标签分类问题,将Hashtag看作为微博的类别。但是这些方法的输出空间固定,在没有进行重新训练的情况下,不能处理训练不可见的Hashtag。然而,实际上Hashtag会随着时事热点不断快速更新。为了解决这一问题,该文提出将Hashtag推荐任务建模成小样本学习任务。同时,结合用户使用Hashtag的偏好降低推荐的复杂度。在真实的推特数据集上的实验表明,与目前最优方法相比,该模型不仅可以取得更好的推荐结果,而且表现得更为鲁棒。

Abstract

Hashtag recommendation has received considerable attention in recent years. Most existing deep learning methods formulate this task as a multi-class classification problem to categorize tweets into a fixed number of target classes. However, as new hashtags are continuously introduced by users with daily bursts of news, these methods fail to tackle new hashtags without retraining. To solve this problem, we proposed to convert hashtag recommendation task to a few-shot learning problem. In addition, we combined users’ preference for hashtag usage to reduce the complexity of recommendation algorithm. Experimental results on the real-world dataset demonstrate that our method achieves significant performance improvement over the state-of-the-art methods and is more robust.

关键词

Hashtag推荐 / 小样本学习 / 个性化推荐

Key words

Hashtag recommendation / few-shot learning / personalized recommendation

引用本文

导出引用
曾兰君,彭敏龙,刘雅琦,许辽萨,魏忠钰,黄萱菁. 基于小样本学习的个性化Hashtag推荐. 中文信息学报. 2021, 35(9): 102-112
ZENG Lanjun, PENG Minlong, LIU Yaqi, XU Liaosa, WEI Zhongyu, HUANG Xuanjing. Personalized Hashtag Recommendation Using Few-shot Learning. Journal of Chinese Information Processing. 2021, 35(9): 102-112

参考文献

[1] Efron M. Hashtag retrieval in a microblogging environment[C]//Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2010: 787-788.
[2] Bandyopadhyay A, Ghosh K, Majumder P, et al. Query expansion for microblog retrieval[J]. International Journal of Web Science, 2012, 1(4): 368-380.
[3] Wang X, Wei F, Liu X, et al. Topic sentiment analysis in twitter: A graph-based hashtag sentiment classification approach[C]//Proceedings of the 20th ACM International Conference on Information and Knowledge Management, 2011: 1031-1040.
[4] Zhang Q, Wang J, Huang H, et al. Hashtag recommendation for multimodal microblog using co-attention network[C]//Proceedings of the IJCAI, 2017: 3420-3426.
[5] Huang H, Zhang Q, Gong Y, et al. Hashtag recommendation using end-to-end memory networks with hierarchical attention[C]//Proceedings of the 26th International Conference on Computational Linguistics: Technical Papers, 2016: 943-952.
[6] Gong Y, Zhang Q. Hashtag recommendation using attention-based convolutional neural network[C]//Proceedings of the IJCAI, 2016: 2782-2788.
[7] Dhingra B, Zhou Z, Fitzpatrick D, et al. Tweet2Vec: Character-based distributed representations for social media[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, 2016: 269-274.
[8] Li Y, Liu T, Jiang J, et al. Hashtag recommendation with topical attention-based LSTM[C]//Proceedings of the COLING, 2016: 3019-3029.
[9] Ma R, Qiu X, Zhang Q, et al. Co-attention memory network for multimodal microblog's hashtag recommendation[C]//Proceedings of the IEEE Transactions on Knowledge and Data Engineering, 2019.
[10] Wei Y, Cheng Z, Yu X, et al. Personalized Hashtag recommendation for micro-videos[C]//Proceedings of the 27th ACM International Conference on Multimedia, 2019: 1446-1454.
[11] Chen H M, Chang M H, Chang P C, et al. Sheepdog: Group and tag recommendation for flickr photos by automatic search-based learning[C]//Proceedings of the 16th ACM International Conference on Multimedia, 2008: 737-740.
[12] Mazzia A, Juett J. Suggesting Hashtags on twitter[C]//Proceedings of Machine Learning, Computer Science and Engineering, University of Michigan, 2009.
[13] Ding Z, Qiu X, Zhang Q, et al. Learning topical translation model for microblog Hashtag suggestion[C]//Proceedings of the 23rd International Joint Conference on Artificial Intelligence, 2013.
[14] Wang Y, Qu J, Liu J, et al. What to tag your microblog: Hashtag recommendation based on topic analysis and collaborative filtering[C]//Proceedings of the Asia-Pacific Web Conference. Springer, Cham, 2014: 610-618.
[15] Krestel R, Fankhauser P, Nejdl W. Latent Dirichlet allocation for tag recommendation[C]//Proceedings of the 3rd ACM Conference on Recommender Systems, 2009: 61-68.
[16] Kowald D, Pujari S C, Lex E. Temporal effects on Hashtag reuse in twitter: A cognitive-inspired Hashtag recommendation approach[C]//Proceedings of the 26th International Conference on World Wide Web, 2017: 1401-1410.
[17] Tran V C, Hwang D, Nguyen N T. Hashtag recommendation approach based on content and user characteristics[J]. Cybernetics and Systems, 2018, 49(5-6): 368-383.
[18] 颛悦,熊锦华,程学旗. 一种融合个性化与多样性的人物标签推荐方法[J]. 中文信息学报, 2017, 31(2): 154-162.
[19] Belhadi A, Djenouri Y, Lin J C W, et al. A data-driven approach for twitter Hashtag recommendation[J]. IEEE Access, 2020, 8: 79182-79191.
[20] Alsini A, Datta A, Huynh D Q. On utilizing communities detected from social networks in Hashtag recommendation[C]//Proceedings of the IEEE Transactions on Computational Social Systems, 2020.
[21] Li Y, Liu T, Hu J, et al. Topical co-attention networks for Hashtag recommendation on microblogs[J]. Neurocomputing, 2019, 331: 356-365.
[22] Li M, Gan T, Liu M, et al. Long-tail Hashtag recommendation for micro-videos with graph convolutional network[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management, 2019: 509-518.
[23] Peng M, Bian Q, Zhang Q, et al. Model the long-term post history for Hashtag recommendation[C]//Proceedings of the CCF International Conference on Natural Language Processing and Chinese Computing. Springer, Cham, 2019: 596-608.
[24] Kaviani M, Rahmani H. EmHash: Hashtag recommendation using neural network based on BERT Embedding[C]//Proceedings of the 6th International Conference on Web Research IEEE, 2020: 113-118.
[25] Kumar N, Baskaran E, Konjengbam A, et al. Hashtag recommendation for short social media texts using word-embeddings and external knowledge[J]. Knowledge and Information Systems, 2020: 1-24.
[26] Javari A, He Z, Huang Z, et al. Weakly supervised attention for Hashtag recommendation using Graph Data[C]//Proceedings of the Web Conference, 2020: 1038-1048.
[27] 刘颖,雷研博,范九伦,等. 基于小样本学习的图像分类技术综述[J]. 自动化学报, 2020, 21:1-20.
[28] 潘崇煜,黄健,郝建国,龚建兴,张中杰.融合零样本学习和小样本学习的弱监督学习方法综述[J].系统工程与电子技术,2020,42(10):2246-2256.
[29] Vinyals O, Blundell C, Lillicrap T, et al. Matching networks for one shot learning[C]//Proceedings of Advances in Neural Information Processing Systems, 2016: 3630-3638.
[30] Sung F, Yang Y, Zhang L, et al. Learning to compare: Relation network for few-shot learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 1199-1208.
[31] Finn C, Abbeel P, Levine S. Model-agnostic meta-learning for fast adaptation of deep networks[C]//Proceedings of the 34th International Conference on Machine Learning, 2017, 3: 1856-1868.
[32] Mishra N, Rohaninejad M, Chen X, et al. A simple neural attentive meta-learner[C]//Proceedings of the 6th International Conference on Learning Representations, 2018: 1-17.
[33] Li K, Zhang Y, Li K, et al. Adversarial feature hallucination networks for few-shot learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 13470-13479.
[34] Zeng J, Li J, Song Y, et al. Topic memory networks for short text classification[J]. arXiv preprint arXiv:1809.03664, 2018.
[35] Pennington J, Socher R, Manning C D. Glove: Global vectors for word representation[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2014: 1532-1543.

基金

国家重点研发计划——公共安全风险防控与应急技术装备专项(2018YFC0831105)
PDF(3578 KB)

1670

Accesses

0

Citation

Detail

段落导航
相关文章

/