中文药品知识库的研究与构建

张坤丽,任晓辉,庄雷,昝红英,张维聪,穗志方

PDF(1948 KB)
PDF(1948 KB)
中文信息学报 ›› 2022, Vol. 36 ›› Issue (10) : 45-53.
语言资源建设与应用

中文药品知识库的研究与构建

  • 张坤丽1,3,任晓辉1,庄雷1,昝红英1,3,张维聪1,穗志方2,3
作者信息 +

Research and Construction of Chinese Medicine Knowledge Base

  • ZHANG Kunli1,3, REN Xiaohui1, ZHUANG Lei1, ZAN Hongying1,3, ZHANG Weicong1, SUI Zhifang2,3
Author information +
History +

摘要

分类体系完善、药品信息全面的药品知识库能够为临床决策以及临床合理用药提供依据和支持。该文以国内的多个医药资源作为参考和数据来源,建立了药品库知识描述体系和分类体系,对药品进行标准化分类并形成详细的知识描述,构建了多来源的中文药品知识库(Chinese Medicine Knowledge Base,CMKB)。所构建的CMKB的分类包括27种一级类别和119种二级类别,从药品的适应证、用法用量等多个层面对14 141种药品进行描述并采用BiLSTM-CRF和T-BiLSTM-CRF模型将非结构化描述中的疾病实体进行了信息抽取,形成了对药品属性的结构化信息抽取,建立了药品实体与自动抽取的疾病实体之间的知识关联。所构建的CMKB能够与中文医学知识图谱进行连接,扩充药品信息,并能够为智能诊断和医疗问答等提供知识基础。

Abstract

A medicine knowledge base with complete classification system and comprehensive drug information can provide basis and support for clinical decision-making and rational drug use. Based on multiple domestic medical resources as references and data sources, this paper establishes the knowledge description system and classification system of medicine base, standardizes classification of drugs and forms detailed knowledge description, and constructs a multi-source Chinese Medicine Knowledge Base (CMKB). The classification of CMKB includes 27 first-level categories and 119 secondary categories, and describes 14,141 drugs from multiple levels such as drug indications, dosage and administration. Furthermore, the BiLSTM-CRF and T-BiLSTM-CRF models are used to extract information of disease entities in unstructured descriptions, forming structured information extraction of drug attributes, and establishing the knowledge association between drug entities and automatically extracted disease entities. The constructed CMKB can be connected with the Chinese medical knowledge graph to expand drug information, and can provide the knowledge basis for intelligent diagnosis and medical question and answer.

关键词

中文药品知识库 / 知识关联 / 命名实体识别

Key words

Chinese medicine knowledge base / knowledge association / named entity recognition

引用本文

导出引用
张坤丽,任晓辉,庄雷,昝红英,张维聪,穗志方. 中文药品知识库的研究与构建. 中文信息学报. 2022, 36(10): 45-53
ZHANG Kunli, REN Xiaohui, ZHUANG Lei, ZAN Hongying, ZHANG Weicong, SUI Zhifang. Research and Construction of Chinese Medicine Knowledge Base. Journal of Chinese Information Processing. 2022, 36(10): 45-53

参考文献

[1] 吕卫红,江鑫,王松华.药品说明书数据库的建立与应用[J].中国药房,2007,18(4):316-318.
[2] 蔡玉萍.药品说明书在临床用药中的指导作用[J].护理研究:下半月,2004,18(10):1850-1851.
[3] 刘雷,王星.精准医学知识库的构建[J].中华医学图书情报杂志,2018,27(6):1-9.
[4] 杨志.一种基于知识挖掘与知识组织的知识型数据库: 中国疾病知识总库之临床医药学知识服务系统介绍[J].中华医学图书情报杂志,2008,17(3):63-65.
[5] 侯丽,钱庆,黄利辉,等.基于本体的临床医学知识库系统构建探讨[J].医学信息学杂志,2011,32(4):42-47.
[6] 葛彩霞,张寅升,陈维红,等.药物不良反应知识库的建设以及统计分析[J].中国医院药学,2015,35(9):765-769.
[7] 徐帆,曾苏.药品属性分类知识库的构建及其在我院药事管理数据分析中的应用[J].中国药房,2019,30(20):2737-2741.
[8] 张丽,杨耀芳,朱建萍,等.消化系统用药知识库智能化管理系统的应用[J].中国药师,2019(2):378-380.
[9] 朱徐迪.移动医疗行业的共享: 以丁香园、微医为例[J].杭州:我们,2017,32(2):49-52.
[10] World Health Organization. International statistical classification of diseases and related health problems.[EB/OL]https://icd. who. int/browsel0/2016/en.
[11] 牟冬梅,张艳侠,黄丽丽,等.基于SNOMEDCT和FCA的医学领域本体构建研究[J].情报学报,2013(6):653-662.
[12] Amarilli A, Galarraga L, Preda N, et al. Recent topics of research around the YAGO knowledge base[M].Switzerland: Springer International Publishing,2014.
[13] Nelson S J, Johnston W D, Humphreys B L. Relationships in medical subject headings(MeSH)[M]. Relationships in the Organization of Knowledge.Springer Netherlands,2001:171-184.
[14] 昝红英,窦华溢,贾玉祥,等.基于多来源文本的中文医学知识图谱的构建[J].郑州大学学报(理学版),2020,52(2):45-51.
[15] 孟莉英.建立完整、规范的药品信息数据库,提高药品管理和药学服务水平[J].医学信息(医学与计算机应用),2001,14(10):672-673.
[16] 卫生部合理用药专家委员会. MCDEX中国医师药师临床用药指南[M].重庆:重庆出版社,2009.
[17] 奥德玛,杨云飞,穗志方,等. 中文医学知识图谱CMeKG构建初探[J]. 中文信息学报,2019,33(10):1-7.
[18] Yue D H, Zhang K L, Zhuang L,et al. Annotation scheme and specification for named entities and relations on Chinese medical knowledge graph[C]//Proceedings of the 20th Workshop on Chinese Lexical Semantics Workshop, LNAI 1831, 2019,563-574.
[19] Artstein R,Poesio M.Inter-coder agreement for computational linguistics[J].Computational Linguistics,2008,34(4):555-596.

基金

国家重点研发计划(2017YFB1002101);国家社会科学基金(17ZDA138);中国博士后科学基金(2019TQ0286);河南省科技攻关项目(192102210260);河南省医学科技攻关计划省部共建项目(SB201901021);河南省高等学校重点科研项目(19A520003,20A520038);教育部人文社科规划项目(20YJA740033);河南省哲学社会科学规划项目 (2019BYY016)
PDF(1948 KB)

2574

Accesses

0

Citation

Detail

段落导航
相关文章

/