基于双通道语义差网络的方面级别情感分类

曾碧卿,徐马一,杨健豪,裴枫华,甘子邦,丁美荣,程良伦

PDF(10749 KB)
PDF(10749 KB)
中文信息学报 ›› 2022, Vol. 36 ›› Issue (12) : 159-172.
情感分析与社会计算

基于双通道语义差网络的方面级别情感分类

  • 曾碧卿1,徐马一1,杨健豪1,裴枫华1,甘子邦1,丁美荣1,程良伦2
作者信息 +

Aspect-level Sentiment Classification Based on Double Channel Semantic Difference Network

  • ZENG Biqing1, XU Mayi1, YANG Jianhao1, PEI Fenghua 1, GAN Zibang1,
    DING Meirong 1, CHENG Lianglun2
Author information +
History +

摘要

方面级别情感分类旨在分析一个句子中不同方面词的情感极性。先前的研究在文本表示上,难以产生依赖于特定方面词的上下文表示;在语义特征分析上,忽略了方面词的双侧文本在整体语义上与方面词情感极性之间具备不同关联度这一特征。针对上述问题,该文设计了一种双通道交互架构,同时提出了语义差这一概念,并据此构建了双通道语义差网络。双通道语义差网络利用双通道架构捕捉相同文本中不同方面词的上下文特征信息,并通过语义提取网络对双通道中的文本进行语义特征提取,最后利用语义差注意力增强模型对重点信息的关注。该文在SemEval2014的Laptop和Restaurant数据集以及ACL的Twitter数据集上进行了实验,分类准确率分别达到了81.35%、86.34%和78.18%,整体性能超过了所对比的基线模型。

Abstract

Aspect-Level sentiment classification aims to analyze the sentiment polarity of different aspect words in a sentence. To realize aspect-word aware contextual representations, this paper proposes a double channel semantic difference network(DCSDN) with the notation of theory of Semantic Difference. The DCSDN captures the contextual feature information of different aspects in the same text with the double channel architecture, and extract the semantic features of the texts in the double channel via a semantic extraction network. It employs the semantic difference attention to enhance the attention to key information. Experiments on Laptop datasets and Restaurant datasets (SemEval2014) and the Twitter dataset(ACL) demonstrate the accuracy reaching 81.35%, 86.34% and 78.18% respectively.

关键词

自然语言处理 / 方面级别情感分析 / 双通道架构 / 语义差注意力

Key words

natural language processing / aspect-level sentiment classification / double channel architecture / semantic difference attention

引用本文

导出引用
曾碧卿,徐马一,杨健豪,裴枫华,甘子邦,丁美荣,程良伦. 基于双通道语义差网络的方面级别情感分类. 中文信息学报. 2022, 36(12): 159-172
ZENG Biqing, XU Mayi, YANG Jianhao, PEI Fenghua , GAN Zibang,
DING Meirong , CHENG Lianglun.
Aspect-level Sentiment Classification Based on Double Channel Semantic Difference Network. Journal of Chinese Information Processing. 2022, 36(12): 159-172

参考文献

[1] Medhat W, Hassan A, Korashy H. Sentiment analysis algorithms and applications: a survey[J]. Ain Shams Engineering Journal, 2014, 5(4): 1093-1113.
[2] Zhang L, Wang S, Liu B. Deep learning for sentiment analysis: a survey[J]. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2018, 8(4): e1253.
[3] Pontiki M, Galanis D, Papageorgiou H, et al. SemEval-2016 task 5: Aspect based sentiment analysis[C]//Proceedings of the 10th International Workshop on Semantic Evaluation. Stroudsburg, PA: ACL, 2016: 19-30.
[4] Pontiki M, Papageorgiou H, Galanis D, et al. SemEval-2014 task 4: Aspect based sentiment analysis[C]//Proceedings of the 8th International Workshop on Semantic Evaluation. Stroudsburg, PA: ACL, 2014: 27-35.
[5] Liu B. Sentiment analysis and opinion mining[J]. Synthesis Lectures on Human Language Technologies, 2012, 5(1): 1-167.
[6] 朱张莉, 饶元, 吴渊, 等. 注意力机制在深度学习中的研究进展[J]. 中文信息学报,2019, 33(6): 1-11.
[7] LeCun Y, Bengio Y. Convolutional networks for images, speech, and time series[J]. The Handbook of Brain Theory and Neural Networks, 1995, 3361(10): 1995.
[8] Cho K, van Merrinboer B, Gulcehre C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2014: 1724-1734.
[9] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[10] Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate[J]. arXiv preprint arXiv: 14090473,2014,
[11] Ma D, Li S, Zhang X, et al. Interactive attention networks for aspect-level sentiment classification[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence. Menlo Park, CA: AAAI, 2017: 4068-4074.
[12] Fan F, Feng Y, Zhao D. Multi-grained attention network for aspect-level sentiment classification[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2018: 3433-3442.
[13] Huang B, Ou Y, Carley K M. Aspect level sentiment classification with attention-over-attention neural networks[C]//Proceedings of International Conference on Social Computing, Behavioral-Cultural Modeling and Prediction and Behavior Representation in Modeling and Simulation. Berlin: Springer, 2018: 197-206.
[14] Yang C, Zhang H, Jiang B, et al. Aspect-based sentiment analysis with alternating coattention networks[J]. Information Processing & Management, 2019, 56(3): 463-478.
[15] Song Y, Wang J, Jiang T, et al. Targeted sentiment classification with attentional encoder network[C]//International Conference on Artificial Neural Networks. Berlin: Springer, 2019: 93-103.
[16] 杜成玉, 刘鹏远. 基于螺旋注意力网络的方面级别情感分析模型[J]. 中文信息学报,2020, 34(9): 70-77.
[17] Fan Z, Wu Z, Dai X, et al. Target-oriented opinion words extraction with target-fused neural sequence labeling[C]//Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Stroudsburg, PA: ACL, 2019: 2509-2518.
[18] 梅莉莉, 黄河燕, 周新宇, 等. 情感词典构建综述[J]. 中文信息学报, 2016, 30(5): 19-27.
[19] Pang B, Lee L, Vaithyanathan S. Thumbs up?: sentiment classification using machine learning techniques[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, Stroudsburg, PA: ACL, 2002: 79-86.
[20] Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
[21] Dong L, Wei F, Tan C, et al. Adaptive recursive neural network for target-dependent twitter sentiment classification[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: ACL, 2014: 49-54.
[22] Ruder S, Ghaffari P, Breslin J G. A hierarchical model of reviews for aspect-based sentiment analysis[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2016: 999-1005.
[23] Tang D, Qin B, Liu T. Aspect level sentiment classification with deep memory network[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2016: 214-224.
[24] Ma Y, Peng H, Cambria E. Targeted aspect-based sentiment analysis via embedding commonsense knowledge into an attentive LSTM[C]//The 32nd AAAI Conference on Artificial Intelligence, Menlo Park, CA: AAAI, 2018: 5876-5883.
[25] Li X, Bing L, Lam W, et al. Transformation networks for target-oriented sentiment classification[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Stroudsburg, PA: ACL, 2018: 946-956.
[26] Chen Z, Qian T. Transfer capsule network for aspect level sentiment classification[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Stroudsburg, PA: ACL, 2019: 547-556.
[27] Du C, Sun H, Wang J, et al. Capsule network with interactive attention for aspect-level sentiment classification[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Stroudsburg, PA: ACL, 2019: 5492-5501.
[28] Jiang Q, Chen L, Xu R, et al. A challenge dataset and effective models for aspect-based sentiment analysis[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing,Stroudsburg,PA: ACL,2019: 6281-6286.
[29] Wang J, Sun C, Li S, et al. Aspect sentiment classification towards question-answering with reinforced bidirectional attention network[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Stroudsburg, PA: ACL, 2019: 3548-3557.
[30] Chen Z, Qiuchi L, Dawei S. Aspect-based sentiment classification with aspect-specific graph convolutional networks[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Stroudsburg, PA: ACL, 2019: 4568-4578.
[31] He R, Lee W S, Ng H T, et al. An interactive multi-task learning network for end-to-end aspect-based sentiment analysis[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Stroudsburg, PA: ACL, 2019: 504-515.
[32] Liu N, Shen B. Aspect-based sentiment analysis with gated alternate neural network[J]. Knowledge-Based Systems, 2020, 188(105010.
[33] Gan C, Wang L, Zhang Z, et al. Sparse attention based separable dilated convolutional neural network for targeted sentiment analysis[J]. Knowledge-Based Systems, 2020, 188: 104827.
[34] Jiang B, Hou J, Zhou W, et al. METNet: A mutual enhanced transformation network for aspect-based sentiment analysis[C]//Proceedings of the 28th International Conference on Computational Linguistics, Stroudsburg, PA: ACL, 2020: 162-172.
[35] Tang D, Qin B, Feng X, et al. Effective LSTMs for target-dependent sentiment classification[C]//Proceedings of the 26th International Conference on Computational Linguistics: Technical Papers, Stroudsburg, PA: ACL, 2016: 3298-3307.
[36] Devlin J, Chang M-W, Lee K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Stroudsburg, PA: ACL, 2019: 4171-4186.
[37] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]//Proceedings of the International Conference on Neural Information Processing Systems, 2017, 30: 5998-6008.
[38] Kingma D P, Ba J. Adam: A method for stochastic optimization[J]. arXiv preprint arXiv: 14126980, 2014,
[39] Wang Y, Huang M, Zhu X, et al. Attention-based LSTM for aspect-level sentiment classification[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, Stroudsburg, PA: ACL, 2016: 606-615.
[40] Chen P, Sun Z, Bing L, et al. Recurrent attention network on memory for aspect sentiment analysis[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, Stroudsburg, PA: ACL, 2017: 452-461.
[41] 曾义夫, 蓝天, 吴祖峰, 等. 基于双记忆注意力的方面级别情感分类模型[J]. 计算机学报, 2019, 42(8): 1845-1857.
[42] Xu H, Liu B, Shu L, et al. BERT Post-Training for review reading comprehension and aspect-based sentiment analysis[C]//Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Stroudsburg, PA: ACL, 2019: 2324-2335.

基金

国家自然科学基金(61876067);广东省普通高校人工智能重点领域专项(2019KZDZX1033);广东省信息物理融合系统重点实验室建设专项(2020B1212060069)
PDF(10749 KB)

1112

Accesses

0

Citation

Detail

段落导航
相关文章

/