基于语言计算方法的语言认知实验综述

王少楠,张家俊,宗成庆

PDF(3695 KB)
PDF(3695 KB)
中文信息学报 ›› 2022, Vol. 36 ›› Issue (4) : 1-11.
综述

基于语言计算方法的语言认知实验综述

  • 王少楠1,2,张家俊1,2,宗成庆1,2,3
作者信息 +

A Review of Language Cognition Experiments Based on Language Computation

  • WANG Shaonan 1,2, ZHANG Jiajun1,2, ZONG Chengqing1,2,3
Author information +
History +

摘要

人脑对语言的理解过程十分复杂,涉及多个脑网络和加工机制。以往的工作大多采用严格控制的实验设计,针对特定的语言现象展开研究,导致了研究结论趋于碎片化,无法形成关于大脑语言理解的总体结论。另一方面,深度学习的出现引发了语言计算领域的技术变革,语言计算模型在多个任务上达到甚至超越了人类的水平。这为进行全局性、高生态效度的人脑语言理解实验带来可能性,促进了语言认知实验中引入语言计算模型方法的快速发展。那么,利用新兴的语言计算方法可以为大脑语言认知机理的研究带来哪些新的机遇和启发呢?该文归纳总结了利用语言计算方法进行语言认知实验的相关工作,并对未来发展趋势予以展望。

Abstract

The language understanding processes in human brain is very complicated, involving multiple brain networks and processing mechanisms. Most previous work used strictly controlled experimental designs to investigate specific language phenomena. As a result, the research conclusions tend to be fragmented, hardly forming a picture about the brain language understanding. Recently, the emergence of deep learning has triggered technological changes in the field of language computation, and computational language models have reached or even surpassed human levels in multiple tasks. This brings the possibility of conducting global and highly ecologically valid language comprehension experiments, which will promote the develoyment of computational language methods in language cognition experiments. This article summarizes the related work of language cognition experiments using computational language methods, and anticipates the future development trends.

关键词

语言认知 / 语言计算 / 语言理解

Key words

language cognition / language computation / language comprehension

引用本文

导出引用
王少楠,张家俊,宗成庆. 基于语言计算方法的语言认知实验综述. 中文信息学报. 2022, 36(4): 1-11
WANG Shaonan , ZHANG Jiajun, ZONG Chengqing. A Review of Language Cognition Experiments Based on Language Computation. Journal of Chinese Information Processing. 2022, 36(4): 1-11

参考文献

[1] Liberman A M, Cooper F S, Shankweiler D P, et al. Perception of the speech code[J]. Psychological review, 1967, 74(6): 431.
[2] Wang S, Zhang J, Zong C. Learning multimodal word representation via dynamic fusion methods[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2018: 5973-5980.
[3] Wang S, Zhang J, Zong C. Learning sentence representation with guidance of human attention[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence. 2017: 4137-4143.
[4] Wang S, Zhang J, Zong C. Associative multichannel autoencoder for multimodal word representation[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. 2018: 115-124.
[5] Sun J, Wang S, Zhang J, et al. Distill and replay for continual language learning[C]//Proceedings of the 28th International Conference on Computational Linguistics. 2020: 3569-3579.
[6] Zhang J, Zhou L, Zhao Y, et al. Synchronous bidirectional inference for neural sequence generation[J]. Artificial Intelligence, 2020, 281: 103234.
[7] Wang S, Zhang J, Wang H, et al. Fine-grained neural decoding with distributed word representations[J]. Information Sciences, 2020, 507: 256-272.
[8] Sun J, Wang S, Zhang J, et al. Towards sentence-level brain decoding with distributed representations[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2019, 33(01): 7047-7054.
[9] Sun J, Wang S, Zhang J, et al. Neural encoding and decoding with distributed sentence representations[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32(2): 589-603.
[10] Arnon I, Snider N. More than words: Frequency effects for multi-word phrases[J]. Journal of Memory and Language, 2010, 62(1): 67-82.
[11] Ding N, Melloni L, Zhang H, et al. Cortical tracking of hierarchical linguistic structures in connected speech[J]. Nature Neuroscience, 2016, 19(1): 158-164.
[12] Fernandino L, Binder J R, Desai R H, et al. Concept representation reflects multimodal abstraction: A framework for embodied semantics[J]. Cerebral Cortex, 2016, 26(5): 2018-2034.
[13] Binder J R, Conant L L, Humphries C J, et al. Toward a brain-based componential semantic representation[J]. Cognitive Neuropsychology, 2016, 33(3-4): 130-174.
[14] Mitchell T M, Shinkareva S V, Carlson A, et al. Predicting human brain activity associated with the meanings of nouns[J]. Science, 2008, 320(5880): 1191-1195.
[15] Huth A G, De Heer W A, Griffiths T L, et al. Natural speech reveals the semantic maps that tile human cerebral cortex[J]. Nature, 2016, 532(7600): 453-458.
[16] Wang X, Wu W, Ling Z, et al. Organizational principles of abstract words in the human brain[J]. Cerebral Cortex, 2018, 28(12): 4305-4318.
[17] Wehbe L, Murphy B, Talukdar P, et al. Simultaneously uncovering the patterns of brain regions involved in different story reading subprocesses[J]. PloS One, 2014, 9(11): e112575.
[18] Keitel A, Gross J, Kayser C. Perceptually relevant speech tracking in auditory and motor cortex reflects distinct linguistic features[J]. PLoS Biology, 2018, 16(3): e2004473.
[19] Ding N, Melloni L, Yang A, et al. Characterizing neural entrainment to hierarchical linguistic units using electroencephalography (EEG)[J]. Frontiers in Human Neuroscience, 2017, 11: 481.
[20] Meyer L, Sun Y, Martin A E. “Entraining” to speech, generating language?[J]. Language, Cognition and Neuroscience, 2020, 35(9): 1138-1148.
[21] Kazanina N, Bowers J S, Idsardi W. Phonemes: Lexical access and beyond[J]. Psychonomic Bulletin and Review, 2018, 25(2): 560-585.
[22] Anderson A J, Kiela D, Binder J R, et al. Deep artificial neural networks reveal a distributed cortical network encoding propositional sentence-level meaning[J]. Journal of Neuroscience, 2021, 41(18): 4100-4119.
[23] Kumar A A. Semantic memory: A review of methods, models, and current challenges[J]. Psychonomic Bulletin and Review, 2021, 28(1): 40-80.
[24] Fedorenko E, Behr M K, Kanwisher N. Functional specificity for high-level linguistic processing in the human brain[J]. Proceedings of the National Academy of Sciences, 2011, 108(39): 16428-16433.
[25] Fedorenko E, Duncan J, Kanwisher N. Broad domain generality in focal regions of frontal and parietal cortex[C]//Proceedings of the National Academy of Sciences, 2013, 110(41): 16616-16621.
[26] Fedorenko E, Duncan J, Kanwisher N. Language-selective and domain-general regions lie side by side within Broca’s area[J]. Current Biology, 2012, 22(21): 2059-2062.
[27] Frankland S M, Greene J D. An architecture for encoding sentence meaning in left mid-superior temporal cortex[C]//Proceedings of the National Academy of Sciences, 2015, 112(37): 11732-11737.
[28] Blank I, Balewski Z, Mahowald K, et al. Syntactic processing is distributed across the language system[J]. NeuroImage, 2016, 127: 307-323.
[29] Thompson C K, Bonakdarpour B, Fix S C, et al. Neural correlates of verb argument structure processing[J]. Journal of Cognitive Neuroscience, 2007, 19(11): 1753-1767.
[30] Yu X, Law S P, Han Z, et al. Dissociative neural correlates of semantic processing of nouns and verbs in Chinese—A language with minimal inflectional morphology[J]. NeuroImage, 2011, 58(3): 912-922.
[31] Chen E, West W C, Waters G, et al. Determinants of BOLD signal correlates of processing object-extracted relative clauses[J]. Cortex, 2006, 42(4): 591-604.
[32] Dapretto M, Bookheimer S Y. Form and content: dissociating syntax and semantics in sentence comprehension[J]. Neuron, 1999, 24(2): 427-432.
[33] Fedorenko E, Nieto-Castanon A, Kanwisher N. Lexical and syntactic representations in the brain: an fMRI investigation with multi-voxel pattern analyses[J]. Neuropsychologia, 2012, 50(4): 499-513.
[34] Humphries C, Binder J R, Medler D A, et al. Syntactic and semantic modulation of neural activity during auditory sentence comprehension[J]. Journal of Cognitive Neuroscience, 2006, 18(4): 665-679.
[35] Reddy A J, Wehbe L. Syntactic representations in the human brain: beyond effort-based metrics[J]. BioRxiv, 2021: 2020.06. 16.155499.
[36] Wang S, Zhang J, Lin N, et al. Probing brain activation patterns by dissociating semantics and syntax in sentences[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2020, 34(05): 9201-9208.
[37] Toneva M, Mitchell T M, Wehbe L. Combining computational controls with natural text reveals new aspects of meaning composition[J]. BioRxiv, 2020.
[38] Zhang Y, Han K, Worth R, et al. Connecting concepts in the brain by mapping cortical representations of semantic relations[J]. Nature Communications, 2020, 11(1): 1-13.
[39] Anderson A J, Lalor E C, Lin F, et al. Multiple regions of a cortical network commonly encode the meaning of words in multiple grammatical positions of read sentences[J]. Cerebral Cortex, 2019, 29(6): 2396-2411.
[40] Anderson A J, Kiela D, Clark S, et al. Visually grounded and textual semantic models differentially decode brain activity associated with concrete and abstract nouns[J]. Transactions of the Association for Computational Linguistics, 2017, 5: 17-30.
[41] Mollica F, Siegelman M, Diachek E, et al. Composition is the core driver of the language-selective network[J]. Neurobiology of Language, 2020, 1(1): 104-134.
[42] Asyraff A, Lemarchand R, Tamm A, et al. Stimulus-independent neural coding of event semantics: Evidence from cross-sentence fMRI decoding[J]. NeuroImage, 2021, 236: 118073.
[43] Henderson J M, Choi W, Lowder M W, et al. Language structure in the brain: A fixation-related fMRI study of syntactic surprisal in reading[J]. NeuroImage, 2016, 132: 293-300.
[44] Lopopolo A, Frank S L, Van den Bosch A, et al. Using stochastic language models (SLM) to map lexical, syntactic, and phonological information processing in the brain[J]. PloS One, 2017, 12(5): e0177794.
[45] Pylkknen L. Neural basis of basic composition: what we have learned from the red-boat studies and their extensions[J]. Philosophical Transactions of the Royal Society B, 2020, 375(1791): 20190299.
[46] Bemis D K, Pylkknen L. Simple composition: A magnetoencephalography investigation into the comprehension of minimal linguistic phrases[J]. Journal of Neuroscience, 2011, 31(8): 2801-2814.
[47] Ding N, Pan X, Luo C, et al. Attention is required for knowledge-based sequential grouping: insights from the integration of syllables into words[J]. Journal of Neuroscience, 2018, 38(5): 1178-1188.
[48] Matchin W, Brodbeck C, Hammerly C, et al. The temporal dynamics of structure and content in sentence comprehension: Evidence from fMRI‐constrained MEG[J]. Human Brain Mapping, 2019, 40(2): 663-678.
[49] Nelson M J, El Karoui I, Giber K, et al. Neurophysiological dynamics of phrase-structure building during sentence processing[C]//Proceedings of the National Academy of Sciences, 2017, 114(18): E3669-E3678.
[50] Fedorenko E, Scott T L, Brunner P, et al. Neural correlate of the construction of sentence meaning[C]//Proceedings of the National Academy of Sciences, 2016, 113(41): E6256-E6262.
[51] Hauk O, Davis M H, Ford M, et al. The time course of visual word recognition as revealed by linear regression analysis of ERP data[J]. NeuroImage, 2006, 30(4): 1383-1400.
[52] Kamide Y, Altmann G T M, Haywood S L. The time-course of prediction in incremental sentence processing: Evidence from anticipatory eye movements[J]. Journal of Memory and language, 2003, 49(1): 133-156.
[53] Rastle K, Davis M H, Marslen-Wilson W D, et al. Morphological and semantic effects in visual word recognition: A time-course study[J]. Language and Cognitive Processes, 2000, 15(4-5): 507-537.
[54] Marslen-Wilson W, Tyler L K. The temporal structure of spoken language understanding[J]. Cognition, 1980, 8(1): 1-71.
[55] Chen Y, Jin P, Ding N. The influence of linguistic information on cortical tracking of words[J]. Neuropsychologia, 2020, 148: 107640.
[56] Luo C, Ding N. Cortical encoding of acoustic and linguistic rhythms in spoken narratives[J]. Elife, 2020, 9: e60433.
[57] Wang Y, Zhang J, Zou J, et al. Prior knowledge guides speech segregation in human auditory cortex[J]. Cerebral Cortex, 2019, 29(4): 1561-1571.
[58] Law R, Pylkknen L. Lists with and without syntax: A new approach to measuring the neural processing of syntax[J]. Journal of Neuroscience, 2021, 41(10): 2186-2196.
[59] Flick G, Pylkknen L. Isolating syntax in natural language: MEG evidence for an early contribution of left posterior temporal cortex[J]. Cortex, 2020, 127: 42-57.
[60] Pylkknen L. The neural basis of combinatory syntax and semantics[J]. Science, 2019, 366(6461): 62-66.
[61] Lyu B, Choi H S, Marslen-Wilson W D, et al. Neural dynamics of semantic composition[C]//Proceedings of the National Academy of Sciences, 2019, 116(42): 21318-21327.
[62] Broderick M P, Anderson A J, Di Liberto G M, et al. Electrophysiological correlates of semantic dissimilarity reflect the comprehension of natural, narrative speech[J]. Current Biology, 2018, 28(5): 803-809. e3.
[63] Teng X, Ma M, Yang J, et al. Constrained structure of ancient Chinese poetry facilitates speech content grouping[J]. Current Biology, 2020, 30(7): 1299-1305. e7.
[64] Li J, Pylkknen L. Disentangling semantic composition and semantic association in the left temporal lobe[J]. Journal of Neuroscience, 2021, 41(30): 6526-6538.
[65] Fyshe A, Sudre G, Wehbe L, et al. The lexical semantics of adjective-noun phrases in the human brain[J]. Human Brain Mapping, 2019, 40(15): 4457-4469.
[66] Wehbe L, Vaswani A, Knight K, et al. Aligning context-based statistical models of language with brain activity during reading[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2014: 233-243.
[67] Jain S, Vo V, Mahto S, et al. Interpretable multi-timescale models for predicting fMRI responses to continuous natural speech[C]// Proceedings of the 34th Conference on Neural Information Processing Systems, 2020: 13738-13749.
[68] Jain S, Huth A. Incorporating context into language encoding models for fMRI[C]//Proceedings of the 32nd Annual Conference on Neural Information Processing Systems, 2018: 6629-6638.
[69] Deniz F, Nunez-Elizalde A O, Huth A G, et al. The representation of semantic information across human cerebral cortex during listening versus reading is invariant to stimulus modality[J]. Journal of Neuroscience, 2019, 39(39): 7722-7736.
[70] Brennan J R, Stabler E P, Van Wagenen S E, et al. Abstract linguistic structure correlates with temporal activity during naturalistic comprehension[J]. Brain and Language, 2016, 157: 81-94.
[71] Brennan J, Nir Y, Hasson U, et al. Syntactic structure building in the anterior temporal lobe during natural story listening[J]. Brain and Language, 2012, 120(2): 163-173.
[72] Gauthier J, Levy R. Linking artificial and human neural representations of language[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing.2019: 529-539.
[73] Schrimpf M, Blank I, Tuckute G, et al. The neural architecture of language: Integrative reverse-engineering converges on a model for predictive processing[J]. BioRxiv, 2020.
[74] Willems R M, Frank S L, Nijhof A D, et al. Prediction during natural language comprehension[J]. Cerebral Cortex, 2016, 26(6): 2506-2516.
[75] Hashemzadeh M, Kaufeld G, White M, et al. From Language to Language-ish: How Brain-Like is an LSTM's Representation of Nonsensical Language Stimuli?[J]. ArXiv preprint arXiv:2010.07435, 2020.
[76] Shain C, Blank I A, van Schijndel M, et al. fMRI reveals language-specific predictive coding during naturalistic sentence comprehension[J]. Neuropsychologia, 2020, 138: 107307.
[77] Li J, Wang S, Luh W M, et al. Cortical processing of reference in language revealed by computational models[J]. BioRxiv, 2021: 2020.11. 24.396598.
[78] Hale J, Dyer C, Kuncoro A, et al. Finding syntax in human encephalography with beam search[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. 2018: 2727-2736.
[79] Martin A E, Doumas L A A. A mechanism for the cortical computation of hierarchical linguistic structure[J]. PLoS Biology, 2017, 15(3): e2000663.
[80] Chien H Y S, Honey C J. Constructing and forgetting temporal context in the human cerebral cortex[J]. Neuron, 2020, 106(4): 675-686. e11.
[81] Pereira F, Lou B, Pritchett B, et al. Toward a universal decoder of linguistic meaning from brain activation[J]. Nature Communications, 2018, 9(1): 1-13.
[82] Brennan J R, Hale J T. Hierarchical structure guides rapid linguistic predictions during naturalistic listening[J]. PloS One, 2019, 14(1): e0207741.
[83] Bhattasali S, Brennan J, Luh W M, et al. The Alice Datasets: fMRI & EEG observations of natural language comprehension[C]//Proceedings of the 12th Language Resources and Evaluation Conference. 2020: 120-125.
[84] Nastase S A, Liu Y F, Hillman H, et al. Narratives: fMRI data for evaluating models of naturalistic language comprehension. preprint[J]. Neuroscience, 2020: 2020.06.
[85] Li J, Bhattasali S, Zhang S, et al. Le Petit Prince: A multilingual fMRI corpus using ecological stimuli[J]. BioRxiv, 2021.
[86] Schoffelen J M, Oostenveld R, Lam N H L, et al. A 204-subject multimodal neuroimaging dataset to study language processing[J]. Scientific Data, 2019, 6(1): 1-13.
[87] Hanke M, Baumgartner F J, Ibe P, et al. A high-resolution 7-Tesla fMRI dataset from complex natural stimulation with an audio movie[J]. Scientific Data, 2014, 1(1): 1-18.
[88] Ayyash D, Malik-Moraleda S, Gallée J, et al. The universal language network: A cross-linguistic investigation spanning 45 languages and 11 language families[J]. BioRxiv, 2021.
[89] Poeppel D, Embick D. Defining the relation between linguistics and neuroscience[J]. 21st century psycholinguistics: Four cornerstones, 2005, 1: 103-118.

基金

国家自然科学基金(62036001,61906189)
PDF(3695 KB)

2046

Accesses

0

Citation

Detail

段落导航
相关文章

/