深度学习在论辩挖掘任务中的应用

石岳峰,王熠,张岳

PDF(1845 KB)
PDF(1845 KB)
中文信息学报 ›› 2022, Vol. 36 ›› Issue (7) : 1-12,23.
综述

深度学习在论辩挖掘任务中的应用

  • 石岳峰3,4,王熠1,2,张岳3,4
作者信息 +

Deep Learning in Argument Mining: A Survey

  • SHI Yuefeng3,4, WANG Yi1,2, ZHANG Yue3,4
Author information +
History +

摘要

论辩挖掘任务的目标是自动识别并抽取自然语言中的论辩结构,对论辩结构及其逻辑的分析有助于了解论辨观点的成因,因而该任务受到了研究者越来越多的关注,而基于深度学习的模型因其对复杂结构的编码能力及强大的表征能力,在论辩挖掘任务中得到了广泛的应用。该文对基于深度学习的模型在论辩挖掘任务中的应用进行了系统性的综述,首先介绍了论辩挖掘任务的概念、框架及不同领域的数据集,随后,详细描述了深度学习模型是如何被应用于不同的论辩挖掘任务,最后对论辩挖掘任务现有的问题进行了总结并对未来的研究方向进行了展望。

Abstract

The goal of argument mining task is to automatically identify and extract argumentative structure from natural language. Understanding the argumentative structure and its reasoning contributes to obtaining reasons behind claims, and argument mining has gained great attention from researchers. Deep learning based methods have been generally applied for these tasks owing to their encoding capabilities for complex structures and representation capabilities for latent features. This paper systematically reviews the deep learning methods in argument mining areas, ncluding fundamental concepts, frameworks and datasets. It also introduces how deep learning based methods are applied in different argument mining tasks. Finally, this paper concludes weaknesses of current argument mining methods and anticipates the future research trends.

关键词

综述 / 论辩挖掘 / 深度学习

Key words

survey / argument mining / deep learning

引用本文

导出引用
石岳峰,王熠,张岳. 深度学习在论辩挖掘任务中的应用. 中文信息学报. 2022, 36(7): 1-12,23
SHI Yuefeng, WANG Yi, ZHANG Yue. Deep Learning in Argument Mining: A Survey. Journal of Chinese Information Processing. 2022, 36(7): 1-12,23

参考文献

[1] Moens M F, Boiy E, Palau R M, et al. Automatic detection of arguments in legal texts[C]//Proceedings of the 11th International Conference on Artificial Intelligence and Law, 2007: 225-230.
[2] Pang B, Lee L, Vaithyanathan S. Thumbs up? sentiment classification using machine learning techniques[C]//Proceedings of the EMNLP, 2002: 79-86.
[3] Cabrio E, Villata S. Five years of argument mining: A data-driven analysis[C]//Proceedings of the 27th IJCAI, 2018, 18: 5427-5433.
[4] Green N, Ashley K D, Litman D, et al. The first workshop on argumentation mining[EB/OL]. https://www.uncg.edu/cmp/ArgMining 2014/. [2021-08-02].
[5] Al-Khatib. The 8th Workshop on Argument Mining, 2021[EB/OL]. https: //2021.argmining.org/index.html [2021-08-02].
[6] Simon P. Computational models of argument: Proceedings of COMMA 2014[M]. Amsterdam: Ios Press, 2014.
[7] Huang Z, Xu W, Yu K. Bidirectional LSTM-CRF models for sequence tagging[J]. arXiv preprint arXiv: 1508.01991, 2015.
[8] Sutskever I, Vinyals O, Le Q V. Sequence to sequence learning with neural networks[C]//Proceedings of the NIPS, 2014: 3104-3112.
[9] Chopra S, Auli M, Rush A M. Abstractive sentence summarization with attentive recurrent neural networks[C]//Proceedings of the NAACL, 2016: 93-98.
[10] Lawrence J, Reed C. Argument mining: A survey[J]. Computational Linguistics, 2020, 45(4): 765-818.
[11] Vecchi E M, Falk N, Jundi I, et al. Towards argument mining for social good: A survey[C]//Proceedings of the 59th ACL, 2021: 1338-1352.
[12] 李永泽, 欧石燕. 论辩挖掘研究综述[J]. 图书情报工作, 2020, 64(19): 128-139.
[13] Peldszus A, Stede M. From argument diagrams to argumentation mining in texts: a survey[J]. IJCINI, 2013, 7(1): 1-31.
[14] Habernal I, Gurevych I. Argumentation mining in user-generated web discourse[J]. Computational Linguistics, 2017, 43(1): 125-179.
[15] Park J, Cardie C. A corpus of erulemaking user comments for measuring evaluability of arguments[C]//Proceedings of the LREC, 2018: 1623-1628
[16] Swanson R, Ecker B, Walker M. Argument mining: Extracting arguments from online dialogue[C]//Proceedings of the 16th SIGDIAL, 2015: 217-226.
[17] Lauscher A, Glava G, et al. Investigating the role of argumentation in the rhetorical analysis of scientific publicationswith neural multi-task learning models[C]//Proceedings of the EMNLP, 2018: 3326-3338.
[18] Gemechu D, Reed C. Decompositional argument mining: a general purpose approach for argument graph construction[C]//Proceedings of the 57th ACL, 2019: 516-526.
[19] Haddadan S, Cabrio E, Villata S. Yes, we can! mining arguments in 50 years of us presidential campaign debates[C]//Proceedings of the 57th ACL, 2019: 4684-4690.
[20] Lippi M, Torroni P. Argument mining from speech: detecting claims in political debates[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence, 2016.
[21] Menini S, Cabrio E, Tonelli S, et al. Never retreat, never retract: Argumentation analysis for political speeches[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence, 2018.
[22] Cabrio E, Villata S. A natural language bipolar argumentation approach to support users in online debate interactions[J]. Argument & Computation, 2013, 4(3): 209-230.
[23] Al Khatib K, Wachsmuth H, Hagen M, et al. Cross-domain mining of argumentative text through distant supervision[C]//Proceedings of the NAACL, 2016: 1395-1404.
[24] Mochales R, Moens M F. Argumentation mining[J]. Artificial Intelligence and Law, 2011, 19(1): 1-22.
[25] Poudyal P, avelka J, Ieven A, et al. Echr: legal corpus for argument mining[C]//Proceedings of the 7th Workshop on Argument Mining, 2020: 67-75.
[26] Stab C, Gurevych I. Parsing argumentation structures in persuasive essays[J]. Computational Linguistics, 2017, 43(3): 619-659.
[27] Song W, Song Z, et al. Discourse self-attention for discourse element identification in argumentative student essays[C]//Proceedings of the EMNLP, 2020: 2820-2830.
[28] Mayer T, Cabrio E, Lippi M, et al. Argument mining on clinical trials[C]//Proceedings of the 7th COMMA, 2018: 137-148.
[29] Mayer T, Cabrio E, Villata S. Transformer-based argument mining for healthcare applications[C]//Proceedings of the 24th ECAI, 2020: 2108-2115.
[30] Fromm M, Faerman E, Berrendorf M, et al. Argument mining driven analysis of peer-reviews[C]//Proceedings of the 35th AAAI, 2021: 35(6).
[31] Gupta S, Singh P, Sundriyal M, et al. LESA: Linguistic encapsulation and semantic amalgamation based generalised claim detection from online content[C]//Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, 2021: 3178-3188.
[32] Schaefer R, Stede M. Annotation and detection of arguments in tweets[C]//Proceedings of the 7th Workshop on Argument Mining, 2020: 53-58.
[33] Eger S, Daxenberger J, Stab C, et al. Cross-lingual argumentation mining: Machine translation (and a bit of projection) is all you need![C]//Proceedings of the 27th COLING, 2018: 831-844.
[34] Toledo-Ronen O, Orbach M, Bilu Y, et al. Multilingual argument mining: Datasets and analysis[C]//Proceedings of the EMNLP Findings, 2020: 303-317.
[35] Daxenberger J, Eger S, Habernal I, et al. What is the essence of a claim? cross-domain claim identification[C]//Proceedings of the EMNLP, 2017: 2055-2066.
[36] Jakobsen T S T, Barrett M, Sgaard A. Spurious correlations in cross-topic argument mining[C]//Proceedings of the 10th STARSEM, 2021: 263-277.
[37] Ji L, Wei Z, Li J, et al. Discrete argument representation learning for interactive argument pair identification[C]//Proceedings of the NAACL, 2021: 5467-5478.
[38] Cheng L, Bing L, Yu Q, et al. Argument pair extraction from peer review and rebuttal via multi-task learning[C]//Proceedings of the EMNLP. 2020: 7000-7011.
[39] Habernal I, Gurevych I. Which argument is more convincing? analyzing and predicting convincingness of web arguments using bidirectionalLSTM[C]//Proceedings of the 54th ACL, 2016: 1589-1599.
[40] Gienapp L, Stein B, Hagen M, et al. Efficient pairwise annotation of argument quality[C]//Proceedings of the 58th ACL, 2020: 5772-5781.
[41] Levy R, Bilu Y, et al. Context dependent claim detection[C]//Proceedings of the COLING, 2014: 1489-1500.
[42] Gleize M, Shnarch E, et al. Are you convinced? Choosing the more convincing evidence with a siamese network[C]//Proceedings of the 57th ACL. 2019: 967-976.
[43] Yova K. IBM proeject debater[EB/OL]. https: //www.research.ibm.com/interactive/project-debater/. [2021-08-02].
[44] Ein-Dor L, Shnarch E, Dankin L, et al. Corpus wide argument mining-a working solution[C]//Proceedings of the 34th AAAI, 2020.
[45] Wachsmuth H, Syed S, Stein B. Retrieval of the best counterargument without prior topic knowledge[C]//Proceedings of the 56th ACL, 2018: 241-251.
[46] Wang L, Ling W. Neural network-based abstract generation for opinions and arguments[C]//Proceedings of the NAACL, 2016: 47-57.
[47] Zaremba W, Sutskever I, Vinyals O. Recurrent neural network regularization[J]. arXiv preprint arXiv: 1409.2329, 2014.
[48] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural computation, 1997, 9(8): 1735-1780.
[49] Accuosto P, Saggion H. Mining arguments in scientific abstracts with discourse-level embeddings[J]. Data & Knowledge Engineering, 2020, 129: 101840.
[50] Guggilla C, Miller T, Gurevych I. CNN-and LSTM-based claim classification in online user comments[C]//Proceedings of the 26th COLING, 2016: 2740-2751.
[51] Cocarascu O, Toni F. Identifying attack and support argumentative relations using deep learning[C]//Proceedings of the EMNLP, 2017: 1374-1379.
[52] Eger S, Daxenberger J, Gurevych I. Neural end-to-end learning for computational argumentation mining[C]//Proceedings of the 55th ACL, 2017: 11-22.
[53] Morio G, Ozaki H, Morishita T, et al. Towards better non-tree argument mining: proposition-level biaffine parsing with task-specific parameterization[C]//Proceedings of the 58th ACL, 2020: 3259-3266.
[54] Li Y, Tarlow D, et al. Gated graph sequence neural networks[J]. arXiv preprint arXiv: 1511.05493, 2015.
[55] Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks[J]. arXiv preprint arXiv: 1609.02907, 2016.
[56] Yuan J, Wei Z, Zhao D, et al. Leveraging argumentation knowledge graph for interactive argument pair identification[C]//Proceedings of the 59th ACL, 2021: 5467-5478.
[57] Song L, Gildea D, Zhang Y, et al. Semantic neural machine translation using AMR[J]. Transactions of the Association for Computational Linguistics, 2019, 7: 19-31.
[58] Qiu D, Zhang Y, Feng X, et al. Machine reading comprehension using structural knowledge graph-aware network[C]//Proceedings of the EMNLP-IJCNLP, 2019: 5896-5901.
[59] Devlin J, Chang M W, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the NAACL, 2019: 4171-4186.
[60] Reimers N, Schiller B, Beck T, et al. Classification and clustering of arguments with contextualized word embeddings[C]//Proceedings of the 57th ACL, 2019: 567-578.
[61] Vaswani A, Shazeer N, et al. Attention is all you need[C]//Proceedings of the 31st NeurIPS. 2017: 5998-6008.
[62] Paul D, Opitz J, Becker M, et al. Argumentative relation classification with background knowledge[J]. Computational Models of Argument, 2020: 319-330.
[63] Hua X, Nikolov M, Badugu N, et al. Argument mining for understanding peer reviews[C]//Proceedings of the NAACL, 2019: 2131-2137.
[64] Li M, Gao Y, Wen H, et al. Joint RNN model for argument component boundary detection[C]//Proceedings of the IEEE International Conference on Systems, Man and Cybernetics. IEEE, 2017: 57-62.
[65] Wührl A, Klinger R. Claim detection in biomedical twitter posts[C]//Proceedings of the 20th Workshop on Biomedical Language Processing,2021: 131-142.
[66] Wang H, Huang Z, Dou Y, et al. Argumentation mining on essays at multi scales[C]//Proceedings of the 28th COLING, 2020: 5480-5493.
[67] Mayer T, Marro S, Cabrio E, et al. Generating adversarial examples for topic-dependent argument classification[J]. Computational Models of Argument. IOS Press, 2020: 33-44.
[68] Dagan I, Glickman O. Probabilistic textual entailment: generic applied modeling of language variability[J]. Learning Methods for Text Understanding and Mining, 2004: 26-29.
[69] Opitz J. Argumentative relation classification as plausibility ranking[J]. arXiv preprint arXiv: 1909.09031, 2019.
[70] Hou R, Chang H, Ma B, et al. Cross attention network for few-shot classification[C]//Proceedings of the 33rd NeurIPS, 2019: 4003-4014.
[71] Chakrabarty T, Hidey C, et al. AMPERSAND: Argument mining for persuasive online discussions[C]//Proceedings of the EMNLP, 2019: 2933-2943.
[72] Ji Y, Eisenstein J. Representation learning for text-level discourse parsing[C]//Proceedings of the 52nd ACL, 2014: 13-24.
[73] Miwa M, Bansal M. End-to-end relation extraction using LSTMs on sequences and tree structures[C]//Proceedings of the 54th ACL, 2016: 1105-1116.
[74] Potash P, Romanov A, Rumshisky A. Heres my point: joint pointer architecture for argument mining[C]//Proceedings of the EMNLP, 2017: 1364-1373.
[75] See A, Liu P J, Manning C D. Get to the point: Summarization with pointer-generator networks[C]//Proceedings of the 55th ACL, 2017: 1073-1083.
[76] Kuribayashi T, Ouchi H, Inoue N, et al. An empirical study of span representations in argumentation structure parsing[C]//Proceedings of the 57th ACL, 2019: 4691-4698.
[77] Wang W, Chang B. Graph-based dependency parsing with bidirectional LSTM[C]//Proceedings of the 54th ACL, 2016: 2306-2315.
[78] Niculae V, Park J, Cardie C. Argument mining with structured SVMs and RNNs[C]//Proceedings of the 55th ACL, 2017: 985-995.
[79] Dozat T, Manning C D. Deep biaffine attention for neural dependency parsing[J]. arXiv preprint arXiv: 1611.01734, 2016.
[80] Ye Y, Teufel S. End-to-end argument mining as biaffine dependency parsing[C]//Proceedings of the 16th EACL, 2021: 669-678.
[81] Bao J, Fan C, Wu J, et al. A neural transition-based model for argumentation mining[C]//Proceedings of the 59th ACL, 2021: 6354-6364.
[82] Zhang Y, Nivre J. Transition-based dependency parsing with rich non-local features[C]//Proceedings of the 49th ACL: Human Language Technologies, 2011: 188-193.
[83] Hori T, Nakamura A. Speech recognition algorithms using weighted finite-state transducers[J]. Synthesis Lectures on Speech and Audio Processing, 2013, 9(1): 1-162.
[84] Rolfe J T. Discretevariational autoencoders[J]. arXiv preprint arXiv: 1609.02200, 2016.[85] Chung J, Gulcehre C, Cho K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[J]. arXiv preprint arXiv: 1412.3555, 2014.
[86] Cheng L, Wu T, Bing L, et al. Argument pair extraction via attention-guided multi-layer multi-cross encoding[C]//Proceedings of the 59th ACL, 2021: 6341-6356.
[87] Ji L, Wei Z, Hu X, et al. Incorporating argument-level interactions for persuasion comments evaluation using co-attention model[C]//Proceedings of the COLING, 2018: 3703-3714.
[88] Huang K Y, Huang H H, Chen H H. HARGAN: heterogeneous argument attention network for persuasiveness prediction[C]//Proceedings of the 35th AAAI, 2021.
[89] Wang X, Ji H, et al. Heterogeneous graph attention network[C]//Proceedings of the WWW, 2019: 2022-2032.
[90] Zhao X, Durmus E, Zhang H, et al. Leveraging topic relatedness for argument persuasion[C]//Proceedings of the 59th ACL, 2021: 4401-4407.
[91] Brown T B, Mann B, Ryder N, et al. Language models are few-shot learners[J]. arXiv preprint arXiv: 2005.14165, 2020.

基金

媒体融合生产技术与系统国家重点实验室2020年度科研课题(SKLMCPTS2020006)
PDF(1845 KB)

2112

Accesses

0

Citation

Detail

段落导航
相关文章

/