基于对话约束的回复生成研究

管梦雨,王中卿,李寿山,周国栋

PDF(2581 KB)
PDF(2581 KB)
中文信息学报 ›› 2022, Vol. 36 ›› Issue (8) : 144-153.
自然语言理解与生成

基于对话约束的回复生成研究

  • 管梦雨,王中卿,李寿山,周国栋
作者信息 +

Research on Response Generation via Dialogue Constraints

  • GUAN Mengyu, WANG Zhongqing, LI Shoushan, ZHOU Guodong
Author information +
History +

摘要

现有的对话系统中存在着生成“好的”“我不知道”等无意义的安全回复问题。日常对话中,对话者通常围绕特定的主题进行讨论且每句话都有明显的情感和意图。因此该文提出了基于对话约束的回复生成模型,即在Seq2Seq模型的基础上,结合对对话的主题、情感、意图的识别。该方法对生成回复的主题、情感和意图进行约束,从而生成具有合理的情感和意图且与对话主题相关的回复。实验证明,该文提出的方法能有效提高生成回复的质量。

Abstract

Existing dialogue systems tend to generate meaningless general replies such as “OK” and “I don't know”. In daily dialogs, every utterance usually has obvious emotional and intentional tendencies. So this paper proposes a response generation model based on dialogue constraints. Based on the Seq2Seq model, it combines the recognition of utterances’ themes, sentiments and intentions. This method constrains the topics, emotions and intentions of the generated responses, generating responses with reasonable sentiment and intention tendencies and close relation to the topic of the conversation. Experiments show that the method proposed in this paper can effectively improve the quality of generated responses.

关键词

对话生成 / 主题识别 / 情感识别 / 意图识别

Key words

dialogue generation / topic recognition / sentiment recognition / act recognition

引用本文

导出引用
管梦雨,王中卿,李寿山,周国栋. 基于对话约束的回复生成研究. 中文信息学报. 2022, 36(8): 144-153
GUAN Mengyu, WANG Zhongqing, LI Shoushan, ZHOU Guodong. Research on Response Generation via Dialogue Constraints. Journal of Chinese Information Processing. 2022, 36(8): 144-153

参考文献

[1] Fried D, Stern M, Klein D. Improving neural parsing by disentangling model combination and reranking effects[J].arXiv preprint arXiv: 1707.03058, 2017.
[2] Huang Z, Xu W, Yu K. Bidirectional LSTM-CRF models for sequence tagging[J].arXiv preprint arXiv: 1508.01991, 2015.
[3] Cho K, Van Merrinboer B, Gulcehre C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J]. arXiv preprint arXiv: 1406.1078, 2014.
[4] Mckay B D, Piperno A. Practical graph isomorphism, II[J]. Journal of Symbolic Computation, 2014, 60: 94-112.
[5] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[6] Vinyals O, Le Q. A neural conversational model[J]. arXiv preprint arXiv: 1506.05869, 2015.
[7] Cho K, Van M B, Gulcehre C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J]. arXiv preprint arXiv: 1406.1078,2014.
[8] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural computation, 1997, 9(8): 1735-1780.
[9] Tian Z, Yan R,Mou L, et al. How to make context more useful?: an empirical study on context-aware neural conversational models[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, 2017: 231-236.
[10] Xing C, Wu Y, Wu W, et al. Hierarchical recurrent attention network for response generation[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2018.
[11] Chen H, Ren Z, Tang J, et al. Hierarchical variational memory network for dialogue generation[C]//Proceedings of the World Wide Web Conference, 2018: 1653-1662.
[12] Zhang H, Lan Y, Pang L, et al. ReCoSa: Detecting the relevant contexts with self-attention for multi-turn dialogue generation[C]//Proceedings of the 57th Annu-al Meeting of the Association for Computational Lin-guistics, 2019.
[13] Kumar A, Irsoy O, Ondruska P, et al. Ask me anything: Dynamic memory networks for natural language processing[C]//Proceedings of the International Conference on Machine Learning, 2016: 1378-1387.
[14] Mou L, Song Y, Yan R, et al. Sequence to backward and forward sequences: a content-introducing approach to generative short-text conversation[J]. arXiv preprint arXiv: 1607.00970, 2016.
[15] Yao L, Zhang Y, Feng Y, et al. Towards implicit content-introducing for generative short-text conversation systems[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2017: 2190-2199.
[16] Xing C, Wu W, Wu Y, et al. Topic aware neural response generation[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2017.
[17] Dziri N, Kamalloo E, Mathewson K W, et al. Augmenting neural response generation with context-aware topical attention[J]. arXiv preprint arXiv: 1811.01063, 2018.
[18] Ghosh S, Chollet M,Laksana E, et al. Affect-LM: A neural language model for customizable affective text generation[J]. arXiv preprint arXiv: 1704.06851, 2017.
[19] Zhou H, Huang M, Zhang T, et al. Emotional chatting machine: Emotional conversation generation with internal and external memory[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2018.
[20] Song Z, Zheng X, Liu L, et al. Generating responses with a specific emotion in dialog[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 2019: 3685-3695.
[21] Asghar N, Poupart P,Hoey J, et al. Affective neural response generation[C]//Proceedings of the European Conference on Information Retrieval. Springer, Cham, 2018: 154-166.
[22] Jo Y, Yoder M M, Jang H, et al. Modeling dialogue acts with content word filtering and speaker preferences[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. Conference on Empirical Methods in Natural Language Processing. NIH Public Access, 2017: 2169.
[23] Zhang B, Zhang X. Hierarchy response learning for neural conversation generation[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, 2019: 1772-1781.
[24] Li Y, Su H, Shen X, et al. Dailydialog: a manually labelled multi-turn dialogue dataset[J]. arXiv preprint arXiv: 1710.03957, 2017.
[25] Papineni K, Roukos S, ward T, et al. BLEU: A method for automatic evaluation of machine translation[C]//Proceedings of the 40th Annual Meeting on Association for Computational Linguistics. Association for Computational Linguistics, 2002: 311-318.
[26] Foltz P W, Kintsch W, Landauer T K. The measurement of textual coherence with latent semantic analysis[J]. Discourse Processes, 1997, 25(2-3): 285-307.
[27] Rus V, Lintean M. An optimal assessment of natural language student input using word-to-word similarity metrics[C]//Proceedings of the 11th International Conference on Intelligent Tutoring systems, 2012: 676-676.
[28] Forgues G, Pineau J, Larchevêque J M, et al. Bootstrapping dialog systems with word embeddings[C]//Proceedings of Nips, Modern Machine Learning and Natural Language Processing Workshop, 2014: 1-2.
[29] Zhao L, Song K, Sun C, et al. Review response generation in e-commerce platforms with external product information[C]//Proceedings of the World Wide Web Conference, 2019: 2425-2435.
[30] Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate[C]//Proceedings of ILLR2015, 2015: 1-15.
[31] Zeng M, Wang Y, Luo Y. Dirichlet latent variable hierarchical recurrent encoder-decoder in dialogue generation[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, 2019.
[32] Zhang H, Lan Y, Pang L, et al. ReCoSa: detecting the relevant contexts with self-attention for multi-turn dialogue generation[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 2019.
[33] Zhang B, Zhang X. Hierarchy response learning for neural conversation generation[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, 2019.

基金

国家自然科学基金青年基金(61806137)
PDF(2581 KB)

1183

Accesses

0

Citation

Detail

段落导航
相关文章

/