社交媒体时代给我们带来便利的同时也造成了谣言泛滥,因此通过人工智能技术进行谣言检测具有重要的研究价值。尽管基于深度学习的谣言检测取得了很好的效果,但其大多数是根据潜在特征进行谣言检测的,无法学习情感与语义之间的相关性,同时忽视了从情感角度提供解释。为解决上述问题,该文提出一种基于双重情感感知的可解释谣言检测模型,旨在利用协同注意力机制分别学习谣言语义与用户评论情感,以及谣言情感与用户评论情感的相关性进行谣言检测,并通过协同注意力权重从情感角度提供合理的解释。在公开的Twitter15、 Twitter16和Weibo20数据集上的实验结果表明,该文提出的模型与对比模型相比,在准确率上分别提高了3.9%,3.9%和4.4%,且具有合理的可解释性。
Abstract
The identification of rumors is of substantial significance research value. Current deep learning-based solution brings excellent results, but fails in capturing the relationship between emotion and semantics or providing emotional explanations. This paper proposes a dual emotion-aware method for interpretable rumor detection, aiming to provide a reasonable explanation from an emotional point of view via co-attention weights. Compared with contrast model, the accuracy is increased by 3.9%,3.3% and 4.4% on the public Twitter15, Twitter16, and Weibo20 datasets.
关键词
谣言检测 /
协同注意力 /
情感特征 /
可解释性 /
语义特征
{{custom_keyword}} /
Key words
rumor detection /
co-attention /
emotion feature /
interpretable /
semantics feature
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李奥, 但志平, 董方敏, 等. 基于改进生成对抗网络的谣言检测方法[J]. 中文信息学报, 2020, 34(09): 78-88.
[2] 琚心怡. 基于深层双向Transformer编码器的早期谣言检测[J]. 信息通信, 2020(05): 17-22.
[3] WU L W, RAO Y. Adaptive interaction fusion networks for fake news detection[C]//Proceedings of the 24th Europear Conference on Artificial Intelligence 2020,2020: 2220-2227.
[4] Guo C, Cao J, Zhang X, et al. Exploiting emotions for fake news detection on social media[J]. arXiv:1903.01728, 2019.
[5] Zhang X, Cao J, Li X, et al. Mining dual emotion for fake news detection[C]//Proceedings of the Web Conference 2021, 2021: 3465-3476.
[6] 祖坤琳, 赵铭伟, 郭凯,等. 新浪微博谣言检测研究[J]. 中文信息学报, 2017, 31(03): 198-204.
[7] Yin W, Kann K, Yu M, et al. Comparative study of CNN and RNN for natural language processing[J]. ArXiv:1702.01923, 2017.
[8] Shu K, Cui L, Wang S, et al. dEFEND: Explainable fake news detection[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Anchorage AK USA: ACM, 2019: 395-405.
[9] Khoo L M S, Chieu H L, Qian Z, et al. Interpretable rumor detection in microblogs by attending to user interactions[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 8783-8790.
[10] Horne B, Adali S. This just in: Fake news packs a lot in title, uses simpler, repetitive content in text body, more similar to satire than real news[C]//Proceedings of the international AAAI Conference on Web and Social Media, 2017: 759-766.
[11] Yang F, Liu Y, Yu X, et al. Automatic detection of rumor on Sina Weibo[C]//Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics - MDS ’12. Beijing, China: ACM Press, 2012: 1-7.
[12] 沈瑞琳, 潘伟民, 彭成, 等. 基于多任务学习的微博谣言检测方法[J]. 计算机工程与应用, 2021, 57(24): 192-197.
[13] 刘政, 卫志华, 张韧弦. 基于卷积神经网络的谣言检测[J]. 计算机应用, 2017, 37(11): 3053-3056.
[14] Cui L, Wang S, Lee D. SAME: Sentiment-aware multi-modal embedding for detecting fake news [C]//Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, 2019: 41-48.
[15] Khattar D, Goud J S, Gupta M, et al. MVAE: Multimodal variational autoencoder for fake news detection[C]//Proceedings of the World Wide Web Conference. San Francisco CA USA: ACM, 2019: 2915-2921.
[16] Bian T, Xiao X, Xu T, et al. Rumor detection on social media with bi-directional graph convolutional networks[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 549-556.
[17] Wu Y, Zhan P, Zhang Y, et al. Multimodal fusion with coattention networks for fake news detection[C]//Proceedings of the Findings of the Association for Computational Linguistics: ACL-IJCNLP. Online: Association for Computational Linguistics, 2021: 2560-2569.
[18] Kou Z, Zhang D, Shang L, et al. What and why towards duo explainable fauxtography detection under constrained supervision[J]. IEEE Transactions on Big Data, 2021(01): 1-14.
[19] Lu Y J, Li C T. GCAN: Graph-aware co-attention networks for explainable fake news detection on social media[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Online 2020: 505-514.
[20] Jin Y, Wang X, Yang R, et al. Towards fine-grained reasoning for fake news detection[G]. AAAI Technical Track on Knowledge Represenlntron and Reasoning, 36(5): 5746-5754.
[21] 成科扬, 王宁, 师文喜, 等. 深度学习可解释性研究进展[J]. 计算机研究与发展, 2020, 57(06): 1208-1217.
[22] Xu X, Zheng Q, Yan Z, et al. Interpretation-enabled software reuse detection based on a multi-level birthmark model[C]//Proceedings of the IEEE/ACM 43rd International Conference on Software Engineering. IEEE, 2021: 873-884.
[23] Lv Y E, Yang Y, Zeng J X. An interpretable mechanism for personalized recommendation based on cross feature[J]. Journal of Intelligent and Fuzzy Systems, 2021, 40(2): 1-12.
[24] Pintelas E G, Liaskos M, Livieris I E, et al. A novel explainable image classification framework: case study on Skin cancer and Plant disease prediction[J]. Neural Computing and Applications, 2021,33(22): 15171-15189.
[25] 刘军民, 李凌敏, 侯梦然, 等. 深度学习的可解释性研究综述[J/OL]. 计算机应用. https://kns.cnki.net/kems/detail/51.1307.TP.20220408.1318.006.html, 2022-04-11.
[26] Du M, Liu N, Hu X. Techniques for interpretable machine learning[J]. Communications of the ACM, 2019, 63(1): 68-77.
[27] Wu L, Rao Y, Zhao Y, et al. DTCA: Decision tree-based co-attention networks for explainable claim verification[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Online 2020: 1024-1035.
[28] Speer R, Chin J, Havasi C. ConceptNet 5.5: An open multilingual graph of general knowledge [C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence, 2017: 4444-4451.
[29] Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word representations in vector space[J]. Arxiv preprint arXiv: 1301.3781 vs., 2013.
[30] Pennington J, Socher R, Manning C. GloVe: Global vectors for word representation[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. Doha, 2014: 1532-1543.
[31] Seyeditabari A, TABARI N, Gholizade S, et al. Emotional embeddings: Refining word embeddings to capture emotional content of words[J].Arxiv preprint arXiv:1906.00112, 2019.
[32] Ma J, Gao W, Wong K F. Detect rumors in microblog posts using propagation structure via kernel learning[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, 2017: 708-717.
[33] Ma J, Gao W, Mitra P, et al. Detecting rumors from microblogs with recurrent neural networks [C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence. 2016: 3818-3824.
[34] Kim Y. Convolutional neural networks for sentence classification[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2014: 1746-1751.
[35] Yang Z, Yang D, Dyer C, et al. Hierarchical attention networks for document classification[C]//Proceedings of the NAACL, 2016: 1480-1489.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家社会科学基金(20BXW101,18XWW015);武警工程大学“优秀研究生培养计划”课题
{{custom_fund}}