一种面向公安警情领域的事件抽取方法

邓秋严,谢松县,曾道建,郑菲,程琛,彭立宏

PDF(1825 KB)
PDF(1825 KB)
中文信息学报 ›› 2022, Vol. 36 ›› Issue (9) : 93-101.
信息抽取与文本挖掘

一种面向公安警情领域的事件抽取方法

  • 邓秋严1,谢松县1,曾道建2,郑菲3,程琛3,彭立宏1
作者信息 +

An Event Extraction Method for Public Security

  • DENG Qiuyan1, XIE Songxian1, ZENG Daojian2, ZHENG Fei3, CHENG Chen3, PENG Lihong1
Author information +
History +

摘要

公安警情领域存在大量警情文本数据,如何从不同源、不同格式的警情文本中抽取出案情相关信息是公安情报信息处理工作的一个重要内容。基于公安警情领域数据特点,该文提出了一种结合无触发词事件识别和基于阅读理解的事件论元角色分类的事件抽取方法。该方法首先采用无触发词方法实现事件识别;在事件识别结果的基础上,通过阅读理解方式实现对事件论元角色的分类。实验表明,该文提出的方法在不标注触发词情况下在警情领域数据中能更好地实现事件信息抽取。

Abstract

There are a large amount of text data in the field of public security. How to extract case-related information from texts of different sources and formats is an important issue for public security information processing. This paper proposes an event extraction method that combines the event detection without triggers and the event argument role classification based on reading comprehension. First of all, this method adopts a method to realize event detection without triggers. Based on the result of event detection, it realizes the classification of event argument role through reading comprehension. Experiments show that the proposed method achieves effective performance of event extraction in the field of public security.

关键词

事件抽取 / 无触发词 / 阅读理解

Key words

event extraction / without triggers / reading comprehension

引用本文

导出引用
邓秋严,谢松县,曾道建,郑菲,程琛,彭立宏. 一种面向公安警情领域的事件抽取方法. 中文信息学报. 2022, 36(9): 93-101
DENG Qiuyan, XIE Songxian, ZENG Daojian, ZHENG Fei, CHENG Chen, PENG Lihong. An Event Extraction Method for Public Security. Journal of Chinese Information Processing. 2022, 36(9): 93-101

参考文献

[1] Doddington G R, Mitchell A, Przybocki M A, et al. The automatic content extraction program-tasks data and evaluation[C] //Proceedings of the International Conference on Language Resources and Evaluation. Lisbon, Portugal: European Language Resources Association, 2004: 837-840.
[2] Li Q, Li J, Sheng J, et al. A compact survey on event extraction: approaches and applications[J]. arXiv preprint arXiv:2107.02126, 2021.
[3] Silja H, Roman Y, Ralph G. Complexity of event structure in IE scenarios[C] //Proceedings of the 19th International Conference on Computational Linguistics,2002:1-7.
[4] Sha L, Qian F, Chang B, et al. Jointly extracting event triggers and arguments by dependency-bridge RNN and tensor-based argument interaction[C] //Proceedings of the Association for the Advance of Artificial Intelligence Conference on Artificial Intelligence,2018:5916-5923.
[5] Chen Y, Xu L, Liu K, et al. Event extraction via dynamic multi-pooling convolutional neural network[C] //Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, China,2015:167-176.
[6] Nguyen T, Cho K, Ralph G. Joint event extraction via recurrent neural networks[C]//Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. California, 2016:300-309.
[7] Feng X, Huang L, Tang D, et al. A language-independent neural network for event detection[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, Berlin, Germany, 2016:1-12.
[8] Liu S, Li Y, Zhang F, et al. Event detection without triggers[C]//Proceedings of the Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2019:735-744.
[9] Wang X, Han X, Liu Z , et al. Adversarial training for weakly supervised event detection[C]// Proceedings of the Conference of the North, 2019:998-1008.
[10] Jindal D, Deutsch D, Dan R . Is killed more significant than fled? A contextual model for salient event detection[C]// Proceedings of the 28th International Conference on Computational Linguistics, 2020:114-124.
[11] Li R, Zhao W, Yang C, et al. Treasures outside contexts: improving event detection via global statistics[C] // Proceedings of the Conference on Empirical Methods in Natural Language Processing and the 11th International Joint Conference on Natural Language Processing, 2021:2625-2635.
[12] Karl M, Tomas K E G, et al. Teaching machines to read and comprehend[C]//Proceedings of the Conference and Workshop on Neural Information Processing Systems, 2015:1693-1701.
[13] Chen D, Bolton J, Manning C D. A thorough examination of the CNN/daily mail reading comprehension task[J]. arXiv preprint arXiv:1606.02858, 2016.
[14] Mccann B, Keskar N S, Xiong C, et al. The natural language decathlon: Multitask learning as question answering[J]. arXiv preprint arXiv:1806.08730, 2018.
[15] Li X, Feng J, Meng Y, te al. A unified MRC framework for named entity recognition[J]. arXiv preprint arXiv:1910.11476.
[16] Omer L, Minjoon S, Choi E, et al. Zero-shot relation extraction via reading comprehension[J]. arXiv preprint arXiv:1706.04115, 2017.
[17] Li D, Huang L, Ji H, et al. Biomedical event extraction based on knowledge-driven tree-LSTM[C]//Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2019: 718-721.
[18] Li X, Yin F, Sun Z, et al. Entity-relation extraction as multi-turn question answering[J]. arXiv preprint arXiv:1905.05529, 2019.
[19] Wang X, Wang Z, Han X, et al. HMEAE: Hierarchical modular event argument extraction[C]// Proceedings of the Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, 2019:5777-5783.
[20] Liu S, Zhang X, Zhang S, et al. Neural machine reading comprehension: methods and trends[J]. Applied Sciences, 2019, 9(18): 3698.
[21] Chen D. Neural reading comprehension and beyond[D]. Stanford: Thesis, Stanford University, 2018.
[22] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need [C]//Proceedings of the Advances in Neural Information Processing Systems, 2017:5998-6008.

基金

广州科技计划项目(2019030010);湖南省自然科学基金(2020JJ4624);湖南省教育厅重点项目(19A020)
PDF(1825 KB)

1718

Accesses

0

Citation

Detail

段落导航
相关文章

/