量子自然语言处理: 历史演变与新进展

樊子鹏, 张鹏, 高珲

PDF(1667 KB)
PDF(1667 KB)
中文信息学报 ›› 2023, Vol. 37 ›› Issue (1) : 1-15.
综述

量子自然语言处理: 历史演变与新进展

  • 樊子鹏,张鹏,高珲
作者信息 +

A Survey of Quantum Natural Language Processing: Evolution and Progress

  • FAN Zipeng, ZHANG Peng, GAO Hui
Author information +
History +

摘要

近些年来,量子自然语言处理作为量子力学和自然语言处理两个领域的交叉研究领域,逐渐受到研究者的重视,并出现了大量关于量子自然语言处理的模型和算法。该文旨在综述当前量子自然语言处理领域的研究动机、研究方法以及相关研究进展。首先简要概述了当前经典算法的问题和研究者将量子力学与自然语言处理相结合的两种研究思路;然后从自然语言处理的语义空间、语义建模和语义交互三个方面,详细阐述量子力学在其中所起到的重要作用,通过分析量子计算平台和经典计算平台在存储资源和运行复杂度两个方面上的差异,证明将量子自然语言处理算法部署到量子计算平台上的必要性;最后对当前量子自然语言处理算法进行列举,并提出该领域可能的发展方向,供研究者进一步展开研究。

Abstract

Quantum natural language processing, as a cross-disciplinary field of quantum mechanics and natural language processing, has gradually attracted the attention of the community, and a large number of quantum natural language processing models and algorithms have been proposed. As a review of these work, this paper briefly summarizes the problems of current classical algorithms and the two research ideas of combinng quantum mechanics with natural language processing. It also explains the role of quantum mechanics in natural language processing from three aspects: semantic space, semantic modeling and semantic interaction. By analyzing the differences in storage resources and computation complexity between the quantum computing platform and the classical computing platform, it reveals the necessity of deploying quantum natural language processing algorithms on the quantum computing platform. Finally, the current quantum natural language processing algorithms are enumerated, and the research direction in this field are outlooked for further research.

关键词

量子力学 / 自然语言处理

Key words

quantum mechanics / natural language processing

引用本文

导出引用
樊子鹏, 张鹏, 高珲. 量子自然语言处理: 历史演变与新进展. 中文信息学报. 2023, 37(1): 1-15
FAN Zipeng, ZHANG Peng, GAO Hui. A Survey of Quantum Natural Language Processing: Evolution and Progress. Journal of Chinese Information Processing. 2023, 37(1): 1-15

参考文献

[1] NADKARNI P M, OHNO MACHADO L, CHAPMAN W W. Natural language processing: An introduction[J]. Journal of the American Medical Informatics Association, 2011, 18(5): 544-551.
[2] ABIODUN O I, JANTAN A, OMOLARA A E, et al. State-of-the-art in artificial neural network applications: A survey[J]. Heliyon, 2018, 4(11): e00938.
[3] CLARK S, COECKE B, SADRZADEH M. A compositional distributional model of meaning[C]//Proceedings of the 2nd Quantum Interaction Symposium. 2008: 133-140.
[4] WANG B, ZHANG P, LI J, et al. Exploration of quantum interference in document relevance judgement discrepancy[J]. Entropy, 2016, 18(4): 144.
[5] SERGUEEV N, GUO H. NEGF-DFT: A first principles formalism for modeling molecular electronics[G]//High Performance Computing Systems and Applications, 2003: 2-4.
[6] KASIM M F, VINKO S M. Learning the exchange-correlation functional from nature with fully differentiable density functional theory[J]. arXiv preprint arXiv: 2102.04229, 2021.
[7] FEYNMAN R P. Simulating physics with computers[M]. Feynman and Computation. CRC Press, 2018: 133-153.
[8] VAN RIJSBERGEN C J. The geometry of information retrieval[M]. Cambridge University Press, 2004.
[9] WANG B, ZHANG P, LI J, et al. Exploration of quantum interference in document relevance judgement discrepancy[J]. Entropy, 2016, 18(4): 144.
[10] JIANG Y, ZHANG P, GAO H, et al. A quantum interference inspired neural matching model for ad-hoc retrieval[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2020: 19-28.
[11] XIE M, HOU Y, ZHANG P, et al. Modeling quantum entanglements in quantum language models[C]//Proceedings of the 24th International Joint Conference on Artificial Intelligence,2015: 1362-1368.
[12] GLEASON A M. Measures on the closed subspaces of a Hilbert space[M]. The Logico-Algebraic Approach to Quantum Mechanics. Springer, Dordrecht, 1975: 123-133.
[13] WARMUTH M K, KUZMIN D. Bayesian generalized probability calculus for density matrices[J]. Machine Learning, 2010, 78(1): 63-101.
[14] SORDONI A, NIE J Y, BENGIO Y. Modeling term dependencies with quantum language models for IR[C]//Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2013: 653-662.
[15] ZHANG P, NIU J, SU Z, et al. End-to-end quantum-like language models with application to question answering[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1): 5666-5673.
[16] LI Q, WANG B, MELUCCI M. CNM: an interpretable complex-valued network for matching[J]. arXiv preprint arXiv: 1904.05298, 2019.
[17] GODDARD, C, WIERZBICKA, A. Semantic and lexical universals: Theory and empirical findings[M]. John Benjamins Publishing Company, 1994: 20.
[18] WANG B, ZHAO D, LIOMA C, et al. Encoding word order in complex embeddings[J]. arXiv preprint arXiv: 1912.12333, 2019.
[19] SADRZADEH M. High level quantum structures in linguistics and multi agent systems[G]//AAAI Spring Symposium: Quantum Interaction, 2007: 9-16.
[20] WIDDOWS D, WIDDOWS D. Geometry and meaning[M]. Stanford: CSLI Publications, 2004.
[21] COECKE B, SADRZADEH M, CLARK S. Mathematical foundations for a compositional distributional model of meaning[J]. arXiv preprint arXiv: 1003.4394, 2010.
[22] MITCHELL J, LAPATA M. Composition in distributional models of semantics[J]. Cognitive Science, 2010, 34(8): 1388-1429.
[23] PRELLER A. Towards discourse representation via pregroup grammars[J]. Journal of Logic Language Information, 2007,16(2): 173-194.
[24] BASILE I, TAMBURINI F. Towards quantum language models[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2017: 1840-1849.
[25] ZHANG P, SU Z, ZHANG L, et al. A quantum many-body wave function inspired language modeling approach[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management, 2018: 1303-1312.
[26] COECKE B, DE FELICE G, MEICHANETZIDIS K, et al. Foundations for near-term quantum natural language processing[J]. arXiv preprint arXiv: 2012.03755, 2020.
[27] ZENG W, COECKE B. Quantum algorithms for compositional natural language processing[J]. arXiv preprint arXiv: 1608.01406, 2016.
[28] R^EHC^EK J, HRADIL Z, JEEK M. Iterative algorithm for reconstruction of entangled states[J]. Physical Review A, 2001, 63(4): 040303.
[29] LVOVSKY A I. Iterative maximum-likelihood reconstruction in quantum homodyne tomography[J]. Journal of Optics b: Quantum and Semiclassical Optics, 2004, 6(6): S556.
[30] WIEBE N, KAPOOR A, SVORE K M. Quantum nearest-neighbor algorithms for machine learning[J]. Quantum Information and Computation, 2015, 15(3-4): 318-358.
[31] ZHANG L, ZHANG P, MA X, et al. A generalized language model in tensor space[J]//Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(01): 7450-7458.
[32] ZHANG P, ZHANG J, MA X, et al. 2021 Text[EB/OL].https://openveview.net Horum?id=ullTx2LOBMV.[2021-07-13]
[33] AERTS D, GABORA L. A theory of concepts and their combinations I[J]. Kybernetes, 2005,34(1/2): 151-175.
[34] AERTS D, GABORA L. A theory of concepts and their combinations II[J]. To appear in Kybernetes, 2005: 34(1/2): 192-221.
[35] COECKE B. Automated quantum reasoning: Non logic-semi-logic-hyper-logic[G]//AAAI Spring Symposium: Quantum Interaction, 2007: 31-38.
[36] LI Q, MELUCCI M, TIWARI P. Quantum language model-based query expansion[C]//Proceedings of the ACM SIGIR International Conference on Theory of Information Retrieval, 2018: 183-186.
[37] WANG B, ZHANG P, LI J, et al. Exploration of quantum interference in document relevance judgement discrepancy[J]. Entropy, 2016, 18(4): 144.
[38] LI Q, LI J, ZHANG P, et al. Modeling multi-query retrieval tasks using density matrix transformation[C]//Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2015: 871-874.
[39] MEICHANETZIDIS K, TOUMI A, DE FELICE G, et al. Grammar-aware question-answering on quantum computers[J]. arXiv preprint arXiv: 2012.03756, 2020.
[40] ZHANG Y, SONG D, LI X, et al. Unsupervised sentiment analysis of twitter posts using density matrix representation[C]//Proceedings of European Conference on Information Retrieval. Springer, Cham, 2018: 316-329.
[41] ZHANG Y, LI Q, SONG D, ET AL. Quantum-inspired interactive networks for conversational sentiment analysis[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, 2019: 5436-5442.
[42] ZHANG Y, SONG D, LI X, et al. A quantum-like multimodal network framework for modeling interaction dynamics in multiparty conversational sentiment analysis[J]. Information Fusion, 2020, 62: 14-31.
[43] NIELSEN M A, CHUANG I L. Quantum computation and quantum information[M]. Cambridge University Press, 2010: 80-97.
[44] CLARK S, PULMAN S. Combining symbolic and distributional models of meaning[C]//Proceedings of the 2007 AAAI Spring Symposium, 2007.
[45] OH S, CHOI J, KIM J. A tutorial on quantum convolutional neural networks[C]//Proceedings of the International Conference on Information and Communication Technology Convergence. IEEE, 2020: 236-239.
[46] CHEN S Y C, YOO S, FANG Y L L. Quantum long short-term memory[C]//Proceedings of ICASSP IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2022: 8622-8626.
[47] LI G, ZHAO X, WANG X. Quantum self-attention neural networks for text classification[J]. arXiv preprint arXiv: 2205.05625, 2022.
[48] LLOYD S, SCHULD M, IJAZ A, et al. Quantum embeddings for machine learning[J]. arXiv preprint arXiv: 2001.03622, 2020.
[49] Mindspore.[EB/OL].https://www.mindspore.cn/.[2020-09-26]

基金

国家自然科学基金(62276188,61876129);天津市研究生科研创新项目(2021YJSB167);中国人工智能学会-华为MindSpore学术奖励基金项目(2021GFW-0871);悟道科研基金(13)
PDF(1667 KB)

1695

Accesses

0

Citation

Detail

段落导航
相关文章

/