对话式论辩研究综述

魏忠钰,丁佳玙,沈晨晨,高源,梁敬聪,纪程炜,林嘉昱,黄萱菁

PDF(9027 KB)
PDF(9027 KB)
中文信息学报 ›› 2023, Vol. 37 ›› Issue (10) : 108-121.
计算论辩专栏

对话式论辩研究综述

  • 魏忠钰1,丁佳玙1,沈晨晨1,高源1,梁敬聪1,纪程炜1,林嘉昱1,黄萱菁2
作者信息 +

A Survey of Dialogical Argumentation

  • WEI Zhongyu1, DING Jiayu1, SHEN Chenchen1, GAO Yuan1, LIANG Jingcong1, JI Chengwei1, LIN Jiayu1, HUANG Xuanjing2
Author information +
History +

摘要

近年来,论辩研究引起计算语言学学者的关注,并催生了一个新的研究领域,即计算论辩学。根据参与论辩过程的人数不同,计算论辩学的研究可以分成两类,即,单体式论辩和对话式论辩。对话式论辩过程在现实世界中广泛存在,如社交网络平台、司法领域、教育领域等,但是相关的研究才刚刚起步。该文综述了对话式论辩领域的基本任务设置、主流模型框架、下游应用以及公开数据和评测方法。最后,该文也指出对话式论辩未来发展的几个研究方向,包括多模态的对话式论辩分析、知识注入的论辩生成等。

Abstract

In recent years, the study of argumentation has given birth to a new research field, i.e. computational argumentation. According to the number of people participating in the argumentation process, the research of computational argumentation can be divided into two categories, namely, monological argumentation and dialogical argumentation. The process of dialogical argumentation happens widely in the real world, such as social network platforms, judicial fields, education fields, etc., but related research has just started. This paper reviews the basic task settings, mainstream model frameworks, downstream applications, and public datasets and evaluation methods in the field of dialogical argumentation. Finally, this paper rveals several research directions for the future development, including multi-modal dialogue argumentation analysis, knowledge-infused argumentation generation, etc.

关键词

计算论辩 / 对话式论辩

Key words

computational argumentation / dialogical argumentation

引用本文

导出引用
魏忠钰,丁佳玙,沈晨晨,高源,梁敬聪,纪程炜,林嘉昱,黄萱菁. 对话式论辩研究综述. 中文信息学报. 2023, 37(10): 108-121
WEI Zhongyu, DING Jiayu, SHEN Chenchen, GAO Yuan, LIANG Jingcong, JI Chengwei, LIN Jiayu, HUANG Xuanjing. A Survey of Dialogical Argumentation. Journal of Chinese Information Processing. 2023, 37(10): 108-121

参考文献

[1] VAN EEMEREN FH, JACKSON S, JACOBS S. Argumentation[M]//Reasonableness and Effectiveness in Argumentative Discourse. Springer, Cham,2015: 3-25.
[2] FREELEY AJ, STEINBERG DL. Argumentation and debate[M]. Cengage Learning,2013.
[3] BESNARD P, HUNTER A. Elements of argumenta-tion[M].Cambridge: MIT Press, 2008.
[4] VAN EEMEREN FH, Grootendorst R, Henkemans AF. Argumentation: Analysis, evaluation, presentation[M]. Routledge,2002.
[5] EGER S, DAXENBERGER J, GUREVYCH I. Neural end-to-end learning for computational argumentation mining[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. 2017: 11-22.
[6] WACHSMUTH H, NADERI N, HOU Y, et al. Computational argumentation quality assessment in natural language[C]//Proceedings of the Conference of the European Chapter of the Association for Computational Lin-guistics, 2017: 176-187.
[7] RAHWAN I, SIMARI GR. Argumentation in artificial intelligence[M]. Heidelberg: Springer, 2009.
[8] BENCHCAPON TJ, DUNNE PE. Argumentation in artificial intelligence[J]. Artificial Intelligence, 2007,171(10-15): 619-641.
[9] ALKHATIB K, WACHSMUTH H, HAGEN M, et al. Crossdomain mining of argumentative text through distant supervision[C]//Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Tech-nologies. 2016: 1395-1404.
[10] PELDSZUS A, STEDEM. Joint prediction in mst-style discourse parsing for argumentation min-ing[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. 2015: 938-948.
[11] STAB C, GUREVYCH I. Identifying argumentative discourse structures in persuasive essays[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. 2014: 46-56.
[12] FENG V W, LIN Z, HIRST G. The impact of deep hier-archical discourse structures in the evaluation of text coherence[C]//Proceedings of COLING, the 25th International Conference on Computational Linguistics: Technical Papers. 2014: 940-949.
[13] WYNER A Z. A functional perspective on argumentation schemes[J]. Argument & Computation, 2016, 7(2-3): 113-133.
[14] TAGHIPOUR K, NG H T. A neural approach to automated essay scoring[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. 2016: 1882-1891.
[15] MIM F S, INOUE N, REISERT P, et al. Unsupervised learning of discourseaware text representation for essay scoring[C]//Proceedings of the 57th Conference of the Association for Computational Linguistics, 2019: 378-385.
[16] ASTERHAN CS, SCHWARZ BB. The effects of monological and dialogical argumentation on concept learning in evolutionary theory[J].Journal of Educational Psychology, 2007,99(3): 626.
[17] HUNTER A, POLBERG S. Empirical methods for modelling persuadees in dialogical argumentation. [C]//Proceedings of the 29th International Conference on Tools with Artificial Intelligence, 2017.
[18] SHIRAFUJI D, RZEPKA R, ARAKI K. Debate outcome prediction using automatic persuasiveness evaluation and counterargument relations[C]//Proceedings of the IJCAI Workshop on Linguistic and Cognitive Approaches To Dialog Agents Workshop LACATODA, 2019.
[19] IMOUSSATEN A, MONTMAIN J, RICO A, et al. A dynamical model for simulating a debate outcome[C]//Proceedings of the 3rd International Conference on Agents and Artificial Intelligence, SciTe-Press, 2011: 31-40.
[20] BESNARD P, GARCA A J, HUNTER A, et al. Introduction to structured argumentation[J]. Argument & Computation, 2014, 5(1): 1-4.
[21] COCARASCU O, TONI F. Combining deep learning and argumentative reasoning for the analysis of social media textual content using small data sets[J]. Computational Linguistics, 2018, 44(4): 833-858.
[22] SCHNEIDER J, GROZA T, PASSANT A. A review of argumentation for the social semantic web[J]. Semantic Web. 2013 ,4(2): 159-218.
[23] ALAGOZ E. Social argumentation in online synchronous communication[J]. International Journal of Computer Supported Collaborative Learning. 2013,8(4): 399-426.
[24] SARTOR G. Introduction: Judicial applications of artificial intelligence[J]. Artificial Intelligence and Law, 1998, 6(2-4): 105-110.
[25] CARBONELL F. Reasoning by consequences: Applying different argumentation structures to the analysis of consequentialist reasoning in judicial decisions[M]. Springer Netherlands, 2013.
[26] MAZZI D. The construction of argumentation in judicial texts: Combining a genre and a corpus perspective[J]. Argumentation, 2007, 21(1): 21-38.
[27] ERDURAN S, JIMNEZALEIXANDRE MP. Argumentation in science education. Perspectives from classroom-Based Research[M]. Springer. 2008.
[28] JIMNEZ ALEIXANDRE MP, ERDURAN S. Argumentation in science education: An overview[J]. Argumentation in Science Education. 2007,35: 3-27.
[29] DUSCHL R A, OSBORNE J. Supporting and promoting argumentation discourse in science education[J]. Studies in Science Education, 2002, 38(1): 39-72.
[30] MIRZA NM, PERRETCLERMONT AN. Argumentation and education: Theoretical foundations and practices[M]. Springer Science & Business Media, 2009.
[31] BURNSTEIN E, VINOKUR A. Persuasive argumenta-tion and social comparison as determinants of attitude polarization[J]. Journal of Experimental Social Psychology, 1977 ,13(4): 315-332.
[32] JI L, WEI Z, LI J, et al. Discrete argument representation learning for interactive argument pair identification[C]//Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language, 2021: 5467-5478.
[33] YUAN J, WEI Z, GAO Y, et al. Overview of SMP-CAIL2020 Argmine: The interactive argument pair extraction in judgement document challenge[J]. Data Intelligence, 2021: 1-20.
[34] YUAN J, WEI Z, ZHAO D, et al. Leveraging argumentation knowledge graph for interactive argument pair identification[G]//Proceedings of the Association for Computational Linguistics: ACL-IJCNLP, 2021: 2310-2319.
[35] DEVLIN J, CHANG M W, LEE K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the Conference of the North American Chapter of the Asso-ciation for Computational Linguistics: Human Language Technologies. Minneapolis, Minnesota: Association for Computational Linguistics, 2019: 4171-4186.
[36] WU Y, LIU P. ACE: A context enhanced model for interactive argument pair identification[C]//Proceedings of the CCF International Conference on Natural Language Processing and Chinese Computing. 2021: 569-578.
[37] BAO J, LIANG B, SUN J, et al. Argument pair extraction with mutual guidance and intersentence relation graph[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2021: 3923-3934.
[38] CHENG L, BING L, YU Q, et al. APE: Argument pair extraction from peer review and rebuttal via multi-task learning[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2020: 7000-7011.
[39] CHENG L, WU T, BING L, et al. Argument pair extraction via attention-guided multilayer multi-cross encoding[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, 2021: 6341-6353.
[40] SOMASUNDARAN S, WIEBE J. Recognizing stances in ideological online debates[C]//Proceedings of the NAACL HLT Workshop on Computational Approaches to Analysis and Generation of Emotion in Text, 2010: 116-124.
[41] HASAN K S, NG V. Stance classification of ideological debates: Data, models, features, and constraints[C]//Proceedings of the 6th International Joint Conference on Natural Language Processing, 2013: 1348-1356.
[42] RANADE S, SANGAL R, MAMIDI R. Stance classification in online debates by recognizing users’ intentions[C]//Proceedings of the SIGDIAL Conference, 2013: 61-69.
[43] BARHAIM R, BHATTACHARYA I, DINUZZO F, et al. Stance classification of context-dependent claims[C]//Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: 2017: 251-261.
[44] WACHSMUTH H, DA SAN MARTINO G, KIESEL D, et al. The impact of modeling overall argumentation with tree kernels[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2017: 2379-2389.
[45] SOBHANI P, MOHAMMAD S, KIRITCHENKO S. Detecting stance in tweets and analyzing its interaction with sentiment[C]//Proceedings of the 5th Joint Conference on Lexical and Computational Semantics, 2016: 159-169.
[46] AUGENSTEIN I, ROCKTSCHEL T, VLACHOS A, et al. Stance detection with bidirectional conditional encoding[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2016: 876-885.
[47] AIOLLI F, DA SAN MARTINO G, SPERDUTI A. Route kernels for trees[C]//Proceedings of the 26th Annual International Conference on Machine Learning, 2009: 17-24.
[48] KOBBE J, HULPU TEXTCOMMABELOWS I, STUCKENSCHMIDT H. Unsupervised stance detection for arguments from consequences[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2020: 50-60.
[49] WEI P, MAO W. Modeling transferable topics for cross-target stance detection[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2019: 1173-1176.
[50] ZHANG B, YANG M, LI X, et al. Enhancing cross-target stance detection with transferable semantic-emotion knowledge[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020: 3188-3197.
[51] HARDALOV M, ARORA A, NAKOV P, et al. Cross domain label adaptive stance detection[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2021: 9011-9028.
[52] PERELMAN C, OLBRECHTSTYTECA L. The New Rhetoric: A treatise on argumentation [M]. Notre Dame University Press, 1969.
[53] CHERSONI E. Manfred stede and jodi schneider: Argumentation mining. synthesis lectures on human language technologies[J]. Lang Resour Eval, 2021, 55(3): 869-871.
[54] RAHIMI Z, LITMAN D J, CORRENTI R, et al. Automatic scoring of an analytical response to text assessment[C]//Proceedings of the 12th International Conference on Intelligent Tutoring Systems, 2014: 601-610.
[55] TAN C, NICULAE V, DANESCU NICULESCU MIZIL C, et al. Winning Arguments: Interaction dynamics and persuasion strategies in good-faith online discussions[C]//Proceedings of the 25th International Conference on World Wide Web, 2016: 613-624.
[56] WACHSMUTH H, ALKHATIB K, STEIN B. Using argument mining to assess the argumentation quality of essays[C]//Proceedings of the 26th International Conference on Computational Linguistics: Technical Papers, 2016: 1680-1691.
[57] STAB C, GUREVYCH I. Recognizing insufficiently supported arguments in argumentative essays[C]//Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, 2017: 980-990.
[58] GURCKE T, ALSHOMARY M, WACHSMUTH H. Assessing the sufficiency of arguments through conclusion generation[C]//Proceedings of the 8th Workshop on Argument Mining, 2021: 67-77.
[59] PERSING I, DAVIS A, NG V. Modeling organization in student essays[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2010: 229-239.
[60] PERSING I, NG V. Modeling thesis clarity in student essays[C]//Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, 2013: 260-269.
[61] PERSING I, NG V. Modeling prompt adherence in student essays[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, 2014: 1534-1543.
[62] PERSING I, NG V. Modeling argument strength in student essays[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguisticsand the 7th International Joint Conference on Natural Language Processing, 2015: 543-552,.
[63] ZHANG J, KUMAR R, RAVI S, et al. Conversational flow in Oxford style debates[C]//Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2016: 136-141.
[64] WANG L, BEAUCHAMP N, SHUGARS S, et al. Winning on the Merits: The joint effects of content and style on debate outcomes[G]//Transactions of the Association for Computational Linguistics, 2017, 5: 219-232.
[65] HABERNAL I, GUREVYCH I. Which argument is more convincing? Analyzing and predicting convincingness of Web arguments using bidirectional LSTM [C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, 2016: 1589-1599.
[66] BRAUNSTAIN L, KURLAND O, CARMEL D, et al. Supporting human answers for advice seeking questions in CQA sites[C]//Proceedings of the Euro-pean Conference on Information Retrieval, 2016.
[67] CABRIO E, VILLATA S. Combining textual entailment and argumentation theory for supporting online debates interactions [C]//Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics,2012: 208-212.
[68] WACHSMUTH H, STEIN B, AJJOUR Y. “PageRank” for argument relevance [C]//Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, 2017: 1117-1127.
[69] BOLTUIC' F, NAJDER J. Identifying Prominent Arguments in online debates using semantic textual similarity [C]//Proceedings of the 2nd Workshop on Argumentation Mining, 2015: 110-115.
[70] DUNG P M. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and N-preson games [J]. Artificial Intelligence, 1995, 77(2): 321-357.
[71] LUKIN S, ANAND P, WALKER M, et al. Argument strength is in the eye of the beholder: Audience effects in persuasion [C]//Proceedings of the 15th Conference of the European Chapter of the Association for Computa-tional Linguistics, 2017: 742-753.
[72] EL BAFF R, WACHSMUTH H, ALKHATIB K, et al. Challenge or empower: Revisiting argumentation quality in a news editorial corpus [C]//Proceedings of the 22nd Conference on Computational Natural Language Learning, 2018: 454-464.
[73] Hu M, Liu B. Mining opinion features in customer reviews[C]//Proceedings of the 19th National Confer-ence on Artifical Intelligence, 2004: 755-760.
[74] WANG L, LING W. neural network-based abstract generation for opinions and arguments [C]//Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2016: 47-57.
[75] Li F, Han C, Huang M, et al. Structure-aware review mining and summarization[C]//Proceedings of the 23rd International Conference on Computational Linguistics. Association for Computational Linguistics, 2010: 653-661.
[76] SYED S, ALKHATIB K, ALSHOMARY M, et al. Generating informative conclusions for argumentative texts[C]//Proceedings of the Association for Computational Linguistics, 2021: 3482-3493.
[77] HUA X, WANG L. Neural argument generation augmented with externally retrieved evidence[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, 2018: 219-230.
[78] ALSHOMARY M, SYED S, POTTHAST M, et al. Argument undermining: Counter-Argument generation by attacking weak premises[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 2019: 2661-2672.
[79] HUA X, WANG L. Sentence-level content planning and style specification for neural text generation[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, 2019: 591-602.
[80] SCHILLER B, DAXENBERGER J, GUREVYCH I. Aspect controlled neural argument generation[C]//Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2021: 380-396.
[81] AL KHATIB K, TRAUTNER L, WACHSMUTH H, et al. Employing argumentation knowledge graphs for neural argument generation[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, 2021: 4744-4754.
[82] WACHSMUTH H, STEDE M, BAFF R E, et al. Argumentation synthesis following rhetorical strategies[C]//Proceedings of the 27th International Conference on Computational Linguistics,2018: 3753-3765.
[83] IBM Research, Project Debater [CP/OL]. https://research.ibm.com/interactive/project-debater/.[2022-08-24].
[84] SLONIM N, BILU Y, ALZATE C, et al. An autonomous debating system [J]. Nature,2021,591(7850): 379-384.
PDF(9027 KB)

1563

Accesses

0

Citation

Detail

段落导航
相关文章

/