实体情感极性识别是一项细粒度情感分析任务,旨在判断给定实体的情感极性。针对金融领域中同一文本中存在多个实体这一问题,该文提出了一种基于交互注意力的双图卷积网络的金融实体情感极性识别方法(ASynSemGCN)。该方法利用预训练模型RoBERTa-wwm-ext,结合实体对句子进行初始表示,再通过多头注意力建立实体与句子之间的交互信息表示。在此基础上,分别利用语法图卷积网络(SynGCN)和语义图卷积网络(SemGCN)对句子进行句法和语义的深层表示,最后,将实体的深层表示、实体字级嵌入表示以及句子嵌入表示拼接,通过全连接层对实体进行情感极性判别。在自建的金融实体情感数据集上进行实验,实验结果表明,该文提出的方法对于金融实体情感极性识别是有效的。
Abstract
Entity sentiment polarity identification is a fine-grained sentiment analysis task that aims to determine the sentiment polarity in given entity. To address such issues as the existence of multiple entities in the same text in the financial field, this thesis proposes a sentiment identification polarity method for financial entities based on interactive attention mechanism with two-graph convolutional network (ASynSemGCN) . In the proposed method, a sentence is initially represented in combination with entities by using the RoBERTa-wwm-ext, and then the interactive information between entities and sentences is established through multi-head attention mechanism. On this basis, we use syntactic graph convolutional network (SynGCN) and semantic graph convolutional network (SemGCN) to capture the syntax and semantics of sentences, respectively. Finally, we concatenate the deep representation of entities, the character embedding of the entity and the sentence embedding to identify entities sentiment polarity by using the full connection layer. Experimental results show that the proposed method is effective for the sentiment polarity identification of financial entities on self-constructed entity financial sentiment dataset.
关键词
实体情感极性 /
金融实体 /
交互注意力 /
双图卷积网络
{{custom_keyword}} /
Key words
entity sentiment polarity /
financial entity /
interactive attention /
bigraph convolutional network
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] PONTIKI M, GALANIS D, PAVLOPOULOS J, et al. Semeval task 4: Aspect based sentiment analysis[C]//Proceedings of the 8th International Workshop on Semantic Evaluation, 2014: 27-35.
[2] DONG L, WE F, TAN C, et al. Adaptive recursive neural network for target-dependent twitter sentiment classification[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, 2014: 49-54.
[3] ZHAO F, WU Z, DAI X. Attention transfer network for aspect-level sentiment classification[C]//Proceedings of the 28th International Conference on Computational Linguistics, 2020: 811-821.
[4] 刘宇瀚,刘常健,徐睿峰,等. 结合字形特征与迭代学习的金融领域命名实体识别[J]. 中文信息学报, 2020, 34(11): 74-83.
[5] 俞佳炳. 面向金融证券领域文本的实体级情感分析技术研究[D]. 杭州:浙江大学硕士学位论文, 2019.
[6] CUI Y, CHE W, LIU T, et al. Pre-training with whole word masking for Chinese BERT[J]. Institute of Electrical and Electronics Engineers/Association for Computing Machinery Transactions on Audio, Speech, and Language Processing,2021: 3504-3514.
[7] TANG D, QIN B, FENG X, et al. Effective LSTMs for target-dependent sentiment classification[C]//Proceedings of the 26th International Conference on Computational Linguistics, 2016: 3298-3307.
[8] LIU N, SHEN B. Aspect-based sentiment analysis with gated alternate neural network[J]. Knowledge-Based Systems. 2020,188: 105010.
[9] WANG Y, HUANG M, ZHAO L, et al. Attention-based LSTM for aspect-level sentiment classification[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2016: 606-615.
[10] MA D, LI S, ZHANG X, et al. Interactive attention networks for aspect-level sentiment classification[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence, 2017: 4068-4074.
[11] FAN F, FENG Y, ZHAO D. Multi-grained attention network for aspect-level sentiment classification[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2018: 3433-3442.
[12] WU Z, LI Y, LIAO J, et al. Aspect-context interactive attention representation for aspect-level sentiment classification[J]. Institute of Electrical and Electronics Engineers Access. 2020: 29238-29248.
[13] PHAN M H, OGUNBONA P O. Modelling context and syntactical features for aspect-based sentiment analysis[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020: 3211-3220.
[14] SUN K, ZHANG R, MENSAH S, et al. Aspect-level sentiment analysis via convolution over dependency tree[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, 2019: 5679-5688.
[15] LIANG B, YIN R, GUI L, et al. Jointly learning as-pect-focused and inter-aspect relations with graph convolutional networks for aspect sentiment analysis[C]//Proceedings of the 28th International Conference on Computational Linguistics, 2020: 150-161.
[16] LI R, CHEN H, FENG F, et al. Dual graph convolutional networks for aspect-based sentiment analysis[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, 2021: 6319-6329.
[17] MCHUGH M L. Interrater reliability: The kappa statistic[J]. Biochemia Medica: Casopis Hrvatskoga Drustva Medicinskih Biokemicara, 2012,22(3): 276-282.
[18] VASWANI A, SHAZEER N, PARMAR N,et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 6000-6010.
[19] MRINI K, DERNONCOURT F, TRAN Q,et al. Rethinking self-attention: An interpretable self-attentive encoder-decoder parser[J]. arXiv preprint arXiv: 1911.03875v1, 2019.
[20] TANG D, QIN B, LIU T. Aspect level sentiment classification with deep memory network[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2016: 214-224.
[21] HUANG B, OU Y, CARLEY K M. Aspect level sentiment classification with attention-over-attention neural networks[J]. arXiv preprint arXiv: 1804.06536v1, 2018.
[22] DEVLIN J, CHANG M, LEE K, et al. BERT: Pretraining of deep bidirectional transformers for language understanding[C]// Proceedings of the Conference of the North American Chapter of the Association for Compu-tational Linguistics, 2019: 4171-4186.
[23] LI S, ZHAO Z, HU R, et al.Analogical reasoning on Chinese morphological and semantic relations[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, 2018: 138-143.
[24] 任鹏飞. 面向金融领域的实体情感分析方法研究[D]. 太原:山西大学硕士学位论文, 2023.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金(62106130,62076158,62072294);山西省基础研究计划项目(20210302124084);山西省高校科技创新计划项目(2021L284);山西省研究生教育创新项目(2022Y128)
{{custom_fund}}