基于会话的推荐方法综述

陈晋鹏, 李海洋, 张帆, 李环, 魏凯敏

PDF(6485 KB)
PDF(6485 KB)
中文信息学报 ›› 2023, Vol. 37 ›› Issue (3) : 1-17,26.
综述

基于会话的推荐方法综述

  • 陈晋鹏1,2,李海洋1,2,张帆1,2,李环3,魏凯敏4
作者信息 +

Review on Session-based Recommendation Methods

  • CHEN Jinpeng1,2, LI Haiyang1,2, ZHANG Fan1,2, LI Huan3, WEI Kaimin4
Author information +
History +

摘要

近年来,基于会话的推荐方法受到学术界的广泛关注。随着深度学习技术的不断发展,不同的模型结构被应用于基于会话的推荐方法中,如循环神经网络、注意力机制、图神经网络等。该文对这些基于会话的推荐模型进行了详细的分析、分类和对比,阐明了这些方法各自解决的问题与存在的不足。具体而言,该文首先通过调研,将基于会话的推荐方法与传统推荐方法进行比较,阐明基于会话的推荐方法的主要优缺点;其次,详细描述了现有的基于会话的推荐模型如何建模会话集中的复杂数据信息,以及这些模型方法可解决的技术问题;最后,该文讨论并指出了在基于会话推荐的领域中存在的挑战和未来研究的方向。

Abstract

In recent years, session-based recommendation methods have attracted extensive attention from academics. With the continuous development of deep learning techniques, different model structures have been used in session-based recommendation methods, such as Recurrent Neural Networks, Attention Mechanism, and Graph Neural Networks. This paper conducts a detailed analysis, classification, and comparison over these models, and expounds on the target problems and shortcomings of these methods. In particular, this paper first compares the session-based recommendation methods with the traditional recommendation methods, and expounds the main advantages and disadvantages of the session-based recommendation methods through investigation. Subsequently, this paper details how complex data and information are modeled in session-based recommendation models, as well as the problems that these models can solve. Finally, this paper discusses and ideatifies the challenges and potential research directions in session-based recommendations.

关键词

基于会话的推荐方法 / 会话建模 / 深度学习

Key words

session-based recommendation method / session modeling / deep learning

引用本文

导出引用
陈晋鹏, 李海洋, 张帆, 李环, 魏凯敏. 基于会话的推荐方法综述. 中文信息学报. 2023, 37(3): 1-17,26
CHEN Jinpeng, LI Haiyang, ZHANG Fan, LI Huan, WEI Kaimin. Review on Session-based Recommendation Methods. Journal of Chinese Information Processing. 2023, 37(3): 1-17,26

参考文献

[1] 许海玲, 吴潇, 李晓东,等. 互联网推荐系统比较研究[J]. 软件学报, 2009, 20(02): 350-362.
[2] 黄立威, 江碧涛, 吕守业,等. 基于深度学习的推荐系统研究综述[J]. 计算机学报, 2018, 41(07): 1619-1647.
[3] SCHAFER J B, KONSTAN J A, RIEDL J. E-commerce recommendation applications[J]. Data Mining and Knowledge Discovery, 2001, 5(1): 115-153.
[4] 孟祥武, 陈诚, 张玉洁. 移动新闻推荐技术及其应用研究综述[J]. 计算机学报, 2016, 39(04): 685-703.
[5] GONG S, ZHU K Q. Positive, negative and neutral: Modeling implicit feedback in session-based news recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2022: 1185-1195.
[6] 李琳, 唐守廉. 基于多层注意力表示的音乐推荐模型[J]. 电子学报, 2020, 48(9): 1672-1679.
[7] 刘树栋, 孟祥武. 一种基于移动用户位置的网络服务推荐方法[J]. 软件学报, 2014, 25(11): 2556-2574.
[8] MOONEY R J, ROY L. Content-based book recommending using learning for text categorization[C]//Proceedings of the 5th ACM Conference on Digital Libraries, 2000: 195-204.
[9] 于洪, 李俊华. 一种解决新项目冷启动问题的推荐算法[J]. 软件学报, 2015, 26(6): 1395-1408
[10] EKSTRAND M D, RIEDL J T, KONSTAN J A. Collaborative filtering recommender systems[J]. Foundations and Trends in Human-Computer Interaction, 2011, 4(2): 81-173.
[11] WANG S, HU L, WANG Y, et al. Sequential recommender systems: Challenges, progress and prospects[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, 2019: 6332-6338.
[12] WANG S, CAO L, WANG Y. A survey on session-based recommender systems[J]. arXiv preprint arXiv: 1902.04864, 2019.
[13] 肖楠.基于会话的推荐算法研究综述[J].现代计算机,2019(36): 33-36.
[14] 任永功,张云鹏,张志鹏.基于粗糙集规则提取的协同过滤推荐算法[J]. 通信学报, 2020, 41(01): 76-83.
[15] 荣辉桂, 火生旭, 胡春华等. 基于用户相似度的协同过滤推荐算法[J]. 通信学报, 2014(35), 314(02): 16-24.
[16] 邓爱林, 朱扬勇, 施伯乐. 基于项目评分预测的协同过滤推荐算法[J]. 软件学报, 2003, 14(9): 1621-1628.
[17] JANNACH D, ZANKER M. Collaborative filtering: Matrix completion and session-based recommendation Tasks[J]. Collaborative Recommendations-Algorithms, Practical Challenges and Applications, 2018: 1-34.
[18] RESNICK P, IACOVOU N, SUCHAK M, et al. Grouplens: An open architecture for collaborative filtering of netnews[C]//Proceedings of the ACM Conference on Computer Supported Cooperative Work, 1994: 175-186.
[19] BONNIN G, JANNACH D. Automated generation of music playlists: Survey and experiments[J]. ACM Computing Surveys, 2014, 47(2): 1-35.
[20] KOREN Y, BELL R, VOLINSKY C. Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42(8): 30-37.
[21] EIRINAKI M, VAZIRGIANNIS M, KAPOGIANNIS D. Web path recommendations based on page ranking and markov models[C]//Proceedings of the 7th Annual ACM International Workshop on Web Information and Data Management, 2005: 2-9.
[22] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[23] SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequence learning with neural networks[J]. Advances in Neural Information Processing Systems, 2014, 27:185-196.
[24] YIN W, SCHüTZE H. Task-specific attentive pooling of phrase alignments contributes to sentence matching[C]//Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, 2017: 699-709.
[25] HIDASI B, KARATZOGLOU A, BALTRUNAS L, et al. Session-based recommendations with recurrent neural networks[J]. arXiv preprint arXiv: 1511.06939, 2015.
[26] CHUNG J, GULCEHRE C, CHO K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[J]. arXiv preprint arXiv: 1412.3555, 2014.
[27] HIDASI B, QUADRANA M, KARATZOGLOU A, et al. Parallel recurrent neural network architectures for feature-rich session-based recommendations[C]//Proceedings of the 10th ACM Conference on Recommender Systems, 2016: 241-248.
[28] BOGINA V, KUFLIK T. Incorporating dwell time in session-based recommendations with recurrent neural networks[C]//Proceedings of the RecTemp@ RecSys, 2017: 57-59.
[29] SUN Y, ZHAO P, ZHANG H. Ta4rec: Recurrent neural networks with time attention factors for session-based recommendations[C]//Proceedings of the International Joint Conference on Neural Networks. IEEE, 2018: 1-7.
[30] RUOCCO M, SKREDE O S L, LANGSETH H. Inter-session modeling for session-based recommendation[C]//Proceedings of the 2nd Workshop on Deep Learning for Recommender Systems, 2017: 24-31.
[31] QUADRANA M, KARATZOGLOU A, HIDASI B, et al. Personalizing session-based recommendations with hierarchical recurrent neural networks[C]//Proceedings of the 11th ACM Conference on Recommender Systems, 2017: 130-137.
[32] PHUONG T M, THANH T C, BACH N X. Combining user-based and session-based recommendations with recurrent neural networks[C]//Proceedings of the International Conference on Neural Information Processing. Springer, Cham, 2018: 487-498.
[33] SONG Y, LEE J G. Augmenting recurrent neural networks with high-order user-contextual preference for session-based recommendation[J]. arXiv preprint arXiv: 1805.02983, 2018.
[34] QU Y, CAI H, REN K, et al. Product-based neural networks for user response prediction[C]//Proceedings of the IEEE 16th International Conference on Data Mining. 2016: 1149-1154.
[35] BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[J]. arXiv preprint arXiv: 1409.0473, 2014.
[36] CHEN C, GUO J, SONG B. Dual attention transfer in session-based recommendation with multi-dimensional integration[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2021: 869-878.
[37] YUAN J, SONG Z, SUN M, et al. Dual sparse attention network for session-based recommendation[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(5): 4635-4643.
[38] LI J, REN P, CHEN Z, et al. Neural attentive session-based recommendation[C]//Proceedings of the ACM on Conference on Information and Knowledge Management, 2017: 1419-1428.
[39] SHANG L, LU Z, LI H. Neural responding machine for short-text conversation[J]. arXiv preprint arXiv: 1503.02364, 2015.
[40] LIU Q, ZENG Y, MOKHOSI R, et al. STAMP: Short-term attention/memory priority model for session-based recommendation[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2018:1831-1839.
[41] ZHOU J, CUI G, HU S, et al. Graph neural networks: A review of methods and applications[J]. AI Open, 2020, 1: 57-81.
[42] WU Z, PAN S, CHEN F, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32(1): 4-24.
[43] GOYAL P, FERRARA E. Graph embedding techniques, applications, and performance: A survey[J]. Knowledge Based Systems, 2018: 78-94.
[44] ZHOU H, TAN Q, HUANG X, et al. Temporal augmented graph neural networks for session-based recommendations[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2021: 1798-1802.
[45] LAI S, MENG E, ZHANG F, et al. An attribute-driven mirror graph network for session-based recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2022: 1674-1683.
[46] GUO J, YANG Y, SONG X, et al. Learning multi-granularity consecutive user intent unit for session-based recommendation[C]//Proceedings of the 15th ACM International Conference on Web Search and Data Mining, 2022: 343-352.
[47] PANG Y, WU L, Shen Q, et al. Heterogeneous global graph neural networks for personalized session-based recommendation[C]//Proceedings of the 15th ACM International Conference on Web Search and Data Mining, 2022: 775-783.
[48] WU S, TANG Y, ZHU Y, et al. Session-based recommendation with graph neural network[C]//Proceedings of the National Conference on Artificial Intelligence, 2019, 33(01): 346-353.
[49] WANG Z, WEI W, CONG G, et al. Global context enhanced graph neural networks for session-based recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2020: 169-178.
[50] GUO W, WANG S, LU W, et al. Sequential dependency enhanced graph neural networks for session-based recommendations[C]//Proceedings of the IEEE 8th International Conference on Data Science and Advanced Analytics, 2021: 1-10.
[51] YU F, ZHU Y, LIU Q, et al. TAGNN: Target attentive graph neural networks for session-based recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2020: 1921-1924.
[52] XIA X, YIN H, YU J, et al. Self-supervised hypergraph convolutional networks for session-based recommendation[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(5): 4503-4511.
[53] YADATI N, NIMISHAKAVI M, Yadav P, et al. Hypergcn: A new method for training graph convolutional networks on hypergraphs[J]. Advances in Neural Information Processing Systems,2019:1509-1520.
[54] LI Y, GAO C, LUO H, et al. Enhancing hypergraph neural networks with intent disentanglement for session-based recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2022: 1997-2002.
[55] ZHANG X, XU B, YANG L, et al. Price DOES matter! Modeling price and interest preferences in
session-based recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2022: 1684-1693.
[56] GUO Y, LING Y, CHEN H. A Time-aware graph neural network for session-based recommendation[J]. IEEE Access, 2020, 8: 167371-167382.
[57] LV Y, ZHUANG L, LUO P, et al. Time-sensitive collaborative interest aware model for session-based recommendation[C]//Proceedings of the IEEE International Conference on Multimedia and Expo. 2020:1-6.
[58] CHEN D, ZHANG X, WANG H, et al. TEAN: Timeliness enhanced attention network for session-based recommendation[J]. Neurocomputing, 2020, 411: 229-238.
[59] XIA X, YIN H, YU J, et al. Self-supervised graph co-training for session-based recommendation[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management, 2021: 2180-2190.
[60] WANG L, XU X, OUYANG K, et al. Self-supervised dual-channel attentive network for session-based social recommendation[C]//Proceedings of the IEEE 38th International Conference on Data Engineering. IEEE, 2022: 2034-2045.
[61] STAMENKOVIC D, KARATZOGLOU A, ARAPAKIS I, et al. Choosing the best of both worlds: Diverse and novel recommendations through multi-objective reinforcement learning[C]//Proceedings of the 15th ACM International Conference on Web Search and Data Mining, 2022: 957-965.
[62] HIDASI B, KARATZOGLOU A. Recurrent neural networks with top-k gains for session-based recommendations[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management, 2018: 843-852.
[63] TAN Y K, XU X, LIU Y. Improved recurrent neural networks for session-based recommendations[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, 2016: 17-22.
[64] DE BRBISSON A, SIMON , AUVOLAT A, et al. Artificial neural networks applied to taxi destination prediction[J]. arXiv preprint arXiv: 1508. 00021, 2015.
[65] GAL Y, GHAHRAMANI Z. A theoretically grounded application of dropout in recurrent neural networks[J]. Advances in Neural Information Processing Systems, 2016:1019-1027.[66] MIKOLOV T, SUTSKEVER I, Chen K, et al. Distributed representations of words and phrases and their compositionality[J]. Advances in Neural Information Processing Systems, 2013, 26.
[67] HAN P, WANG N, LI K, et al. CASR: A collaborative attention model for session-based recommendation[C]//Proceedings of the IEEE 45th Annual Computers, Software, and Applications Conference. IEEE, 2021: 290-296.
[68] WAN S, LAN Y, WANG P, et al. Next basket recommendation with neural networks[C]//Proceedings of the RecSys Posters, 2015.
[69] WANG Y, GUO C, CHU Y, et al. A cross-domain hierarchical recurrent model for personalized session-based recommendations[J]. Neurocomputing, 2020, 380: 271-284.

基金

国家自然科学基金(61702043,61972178);广东省自然科学基金(2019A1515011753,2019B1515120010)
PDF(6485 KB)

Accesses

Citation

Detail

段落导航
相关文章

/