基于词典和字形特征的中文命名实体识别

于舒娟,毛新涛,张昀,黄丽亚

PDF(3229 KB)
PDF(3229 KB)
中文信息学报 ›› 2023, Vol. 37 ›› Issue (3) : 112-122.
信息抽取与文本挖掘

基于词典和字形特征的中文命名实体识别

  • 于舒娟,毛新涛,张昀,黄丽亚
作者信息 +

Chinese Named Entity Recognition Based on Lexicon and Glyph Features

  • YU Shujuan, MAO Xintao, ZHANG Yun, HUANG Liya
Author information +
History +

摘要

命名实体识别是自然语言处理中的一项基础任务。通过基于词典的方法增强词内语义和词边界信息是中文命名实体识别的主流做法。然而,汉字由象形字演变而来,汉字字形中包含着丰富的实体信息,这些信息在该任务中却很少被使用。该文提出了一个基于词典和字形特征的中文命名实体识别模型,将词信息和结构信息统一地结合起来,提高了实体匹配的准确性。该文首先通过SoftLexicon方法丰富语义信息,并使用改进的部首级嵌入优化字符表示;然后通过门卷积网络加强了对潜在词和上下文信息的提取;最后在四个基准数据集上实验,结果表明与传统模型和最新模型相比,基于词典和字形特征的模型取得了显著的性能提升。

Abstract

Named entity recognition is a fundamental task of natural language processing. Lexicon-based method is the popular approach to enhance the representation of semantic and boundary information for Chinese named entity recognition. To utilize the glyphs containing rich entity information , we propose a novel Chinese named entity recognition model based on lexicon and glyph features. Specifically, the model enriches the semantic information through SoftLexicon and optimizes character representation through the improved radical-level embedding, which is fed into gated convolutional network. The experiments on four benchmark datasets show that the proposed model achieves significant improvements compared to both the existing models.

关键词

中文命名实体识别 / 词典 / 字形特征

Key words

Chinese named entity recognition / lexicon / glyph features

引用本文

导出引用
于舒娟,毛新涛,张昀,黄丽亚. 基于词典和字形特征的中文命名实体识别. 中文信息学报. 2023, 37(3): 112-122
YU Shujuan, MAO Xintao, ZHANG Yun, HUANG Liya. Chinese Named Entity Recognition Based on Lexicon and Glyph Features. Journal of Chinese Information Processing. 2023, 37(3): 112-122

参考文献

[1] BUNESCU R, MOONEY R. A shortest path dependency kernel for relation extraction[C]//Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing, 2005: 724-731.
[2] RIEDEL S, YAO L, MCCALLUM A, et al. Relation extraction with matrix factorization and universal schemas[C]//Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2013: 74-84.
[3] CHEN Y, XU L, LIU K, et al. Event extraction via dynamic multi-pooling convolutional neural networks[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, 2015: 167-176.
[4] DIEFENBACH D, LOPEZ V, SINGH K, et al. Core techniques of question answering systems over knowledge bases: A survey[J]. Knowledge and Information Systems, 2018, 55(3): 529-569.
[5] ZHANG Y, YANG J. Chinese NER using lattice LSTM[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, 2018: 1554-1564.
[6] GUI T, MA R, ZHANG Q, et al. CNN-based Chinese NER with lexicon rethinking[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, 2019: 4982-4988.
[7] ZHU Y, WANG G, KARLSSON B F. CAN-NER: Convolutional attention network for Chinese named entity recognition[C]//Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2019: 3384-3393.
[8] MENGGE X, BOWEN Y, TINGWEN L, et al. Porous lattice-based transformer encoder for Chinese NER[C]//Proceedings of the 28th International Conference on Computational Linguistics, 2020: 3831-3841.
[9] LI X, YAN H, QIU X, et al. FLAT: Chinese NER using flat-lattice transformer[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020: 6836-6842.
[10] JIANG W, WANG Y, TANG Y. SDTCNs: Asymmetric double temporal convolutional network for Chinese NER[C]//Proceedings of the International Conference on Wireless Algorithms, Systems, and Applications, 2020: 194-205.
[11] HU Y, ZHU Y, ZHANG J, et al.Toward fully exploiting heterogeneous corpus: A decoupled named entity recognition model with two-stage training[C]//Proceedings of the Association for Computational Linguistics: ACL-IJCNLP 2021, 2021: 1641-1652.
[12] DEVLIN J, CHANG M W, LEE K, et al. Bert: Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics, 2019: 4171-4186.
[13] MA R, PENG M, ZHANG Q, et al. Simplify the usage of lexicon in Chinese NER[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2019: 5951-5960.
[14] DONG C, ZHANG J, ZONG C, et al. Character-based LSTM-CRF with radical-level features for Chinese named entity recognition[M]//Natural Language Understanding and Intelligent Applications.Cham: Springer, 2016: 239-250.
[15] BAI S, KOLTER J Z, KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[J]. arXiv preprint arXiv: 1803.01271, 2018.
[16] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[17] MENG Y, WU W, WANG F, et al. Glyce: Glyph-vectors for chinese character representations[C]//Proceedings of the 33rd Conference on Neural Information Processing Systems, 2019, 32: 2746-2757.
[18] WU S, SONG X, FENG Z. Mect: Multi-metadata embedding based cross-transformer for Chinese named entity recognition[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, 2021: 1529-1539.
[19] SRIVASTAVA R K, GREFF K, SCHMIDHUBER J. Training very deep networks[C]//Proceedings of the 29th Annual Conference on Neural Information Processing Systems, 2015: 2377-2385.
[20] YUAN M, LI Y. Bi-Lattice LSTM model with self-attention for Chinese NER[C]//Proceedings of the IEEE 20th International Conference on Communication Technology, 2020: 1465-1470.
[21] JIN Y, XIE J, GUO W, et al. LSTM-CRF neural network with gated self attention for Chinese NER[J]. IEEE Access, 2019, 7: 136694-136703.
[22] LAFFERTY J, MCCALLUM A, PEREIRA F C N. Conditional random fields: Probabilistic models for segmenting and labeling sequence data[C]//Proceedings of the 18th International Conference on Machine Learning, 2001: 282-289.
[23] PENG N, DREDZE M. Named entity recognition for chinese social media with jointly trained embeddings[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2015: 548-554.
[24] HE H, SUN X. F-score driven max margin neural network for named entity recognition in Chinese social media[C]//Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, 2017: 713-718.
[25] LEVOW G A. The third international Chinese language processing bakeoff: Word segmentation and named entity recognition[C]//Proceedings of the15th SIGHAN Workshop on Chinese Language Processing, 2006: 108-117.
[26] WEISCHEDEL R, PRADHAN S, RAMSHAW L, et al. Ontonotes release 4.0[DS]. LDC2011T03, Philadelphia, Penn.: Linguistic Data Consortium, 2011.
[27] PENG N, DREDZE M. Improving named entity recognition for Chinese social media with word segmentation representation learning[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, 2016: 149-155.
[28] HE H, SUN X. A unified model for cross-domain and semi-supervised named entity recognition in Chinese social media[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2017: 3216-3222.
[29] CAO P, CHEN Y, LIU K, et al. Adversarial transfer learning for Chinese named entity recognition with self-attention mechanism[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2018: 182-192.
[30] CHEN A, PENG F, SHAN R, et al. Chinese named entity recognition with conditional probabilistic models[C]//Proceedings of the 15th SIGHAN Workshop on Chinese Language Processing, 2006: 173-176.
[31] ZHANG S, QIN Y, HOU W J, et al. Word segmentation and named entity recognition for sighan bakeoff 3[C]//Proceedings of the 15th SIGHAN Workshop on Chinese Language Processing, 2006: 158-161.
[32] ZHOU J, QU W, ZHANG F. Chinese named entity recognition via joint identification and categorization[J]. Chinese Journal of Electronics, 2013, 22(2): 225-230.
[33] LU Y, ZHANG Y, JI D. Multi-prototype Chinese character embedding[C]//Proceedings of the 10th International Conference on Language Resources and Evaluation, 2016: 855-859.
[34] CHE W, WANG M, MANNING C D, et al. Named entity recognition with bilingual constraints[C]//Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2013: 52-62.
[35] WANG M, CHE W, MANNING C. Effective bilingual constraints for semi-supervised learning of named entity recognizers[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2013: 919-925.
[36] YANG J, TENG Z, ZHANG M, et al. Combining discrete and neural features for sequence labeling[C]//Proceedings of the International Conference on Intelligent Text Processing and Computational Linguistics, 2016: 140-154.

基金

国家自然科学基金(61977039)
PDF(3229 KB)

1055

Accesses

0

Citation

Detail

段落导航
相关文章

/