印地语自然语言处理研究进展

王连喜, 林楠铠, 蒋盛益, 邓致妍

PDF(2565 KB)
PDF(2565 KB)
中文信息学报 ›› 2023, Vol. 37 ›› Issue (5) : 53-69.
民族、跨境及周边语言信息处理

印地语自然语言处理研究进展

  • 王连喜1,2,林楠铠2,蒋盛益1,2,邓致妍3
作者信息 +

Advances in Hindi Natural Language Processing

  • WANG Lianxi1,2, LIN Nankai2, JIANG Shengyi1,2, DENG Zhiyan3
Author information +
History +

摘要

与西方语言相比,印地语是东南亚地区的一种低资源语言。由于缺少相应的语料、标注规范及计算模型,当前印地语自然语言处理工作并未得到重视,也不能较好地迁移通用语种研究中的前沿方法。该文在进行文献调研和计量分析的基础上,回顾了印地语自然语言处理研究在基础资源建设、词性标注、命名实体识别、句法分析、词义消歧、信息检索、机器翻译、情感分析以及自动摘要等方面的研究进展,最后提出了该领域研究可能面临的问题及挑战,并展望未来发展趋势。

Abstract

Compared with western languages, Hindi is a low resource language in Southeast Asia. Due to the lack of corpus, annotation specifications and computational modeling practices, the studies on Hindi natural language processing have not been well addressed. This paper reviews the research progresses in Hindi natural language processing in terms of the resource construction, part of speech tagging, named entity recognition, syntactic analysis, word sense disambiguation, as well as information retrieval, machine translation, sentiment analysis and automatic summarization. This paper also reveals the issues and challenges in Hindi natural language processing, and outlooks the future development trend.

关键词

印地语 / 自然语言处理 / 低资源语言

Key words

Hindi / natural language processing / resource-scarce language

引用本文

导出引用
王连喜, 林楠铠, 蒋盛益, 邓致妍. 印地语自然语言处理研究进展. 中文信息学报. 2023, 37(5): 53-69
WANG Lianxi, LIN Nankai, JIANG Shengyi, DENG Zhiyan. Advances in Hindi Natural Language Processing. Journal of Chinese Information Processing. 2023, 37(5): 53-69

参考文献

[1] BOJAR O, STRAňáK P, ZEMAN D. Data issues in English-To-Hindi machine translation[C]//Proceedings of the International Conference on Language Resources & Evaluation, DBLP, 2010: 1771-1777.
[2] BAKER P, HARDIE A, MCENERY T, et al. EMILLE: A 67 million word corpus of Indic languages: Data collection, markup and harmonisation[C]//Proceedings of LREC, Lancaster University, 2002: 819-827.
[3] KUNCHUKUTTAN A, MEHTA P, BHATTACHARYYA P. The IIT Bombay English-Hindi parallel corpus[C]//Proceedings of LREC, 2018.
[4] SRIRAM V. NLPTOOLS contest: Summary[C]//Proceedings of ICON NLP Tools Contest, Pune, India, 2008.
[5] YADAV K, MISHRA S, SRIVASTAVA A. A review paper on part of speech tagger for Hindi[J]. International Journal of Engineering Applied Sciences and Technology, 2020, 5(2): 525-530.
[6] GARG N, GOYAL V, PREET S. Rule based Hindi part of speech tagger[C]//Proceedings of COLING 2012, Demonstration Papers, Mumbai, 2012: 163-174.
[7] MODI D, NAIN N. Part-of-speech tagging of Hindi corpus using rule-based method[C]//Proceedings of the International Conference on Recent Cognizance in Wireless Communication & Image Processing, Springer, New Delhi, 2016: 241-247.
[8] MODI D, NAIN N, NEHRA M. Part-of-speech tagging for Hindi corpus in poor resource scenario[J]. Journal of Multimedia Information System, 2018, 5(3): 147-154.
[9] SHARMA A, YADAV V. Approaches to part of speech tagging in Hindi language: A review[J]. International Journal of Advanced Science and Technology, 2020, 29(5): 283-291.
[10] SHRIVASTAVA M, BHATTACHARYYA P. Hindi POS tagger using naive stemming: Harnessing morphological information without extensive linguistic knowledge[C]//Proceedings of the 6th International Conference on Natural Language Processing, Pune, India, 2008: 1-8.
[11] JOSHI N, DARBARI H, MATHUR I. HMM based POS tagger for Hindi[C]// Proceeding of International Conference on Computer Science & Information Technology, 2013: 341-349
[12] DALAL A, NAGARAJ K, SAWANT U, et al. Hindi part-of-speech tagging and chunking: A maximum entropy approach[C]//Proceedings of NLPAI Machine Learning Workshop on Part of Speech and Chunking for Indian Languages, 2006: 1-5.
[13] AGARWAL H,AMNI A. Part of speech tagging and chunking with conditional random fields[C]// Proceedings of the International Workshop on Replication in Empirical Software, Department of Computer Science, Hyderabad: Springer, India, 2006: 1-4.
[14] 王连喜,钟准,丁曾强,等.融合深度神经网络与统计学习的印地语词性标注方法研究[J].湖南工业大学学报, 2020, 34(3): 17-22.
[15] MISHRA N, JAIN S. POS tagging of Hindi language using hybrid approach[C]// Proceedings of the International Conference on Next Generation Computing Technologies, Springer, Singapore, 2018, 827: 723-735.
[16] NARAYAN R, CHAKRAVERTY S, SINGH V. Neural network based parts of speech tagger for Hindi[C]//Proceedings of the International Conference on Advances in Control & Optimization of Dynamical Systems, 2014: 519-524.
[17] NARAYAN R, SINGH V, CHAKRAVERTY S. Quantum neural network based parts of speech tagger for Hindi[J]. International Journal of Advancements In technology, 2014, 5(2): 137-152.
[18] YOUSIF J, SAINI D. Hindi part-of-speech tagger based neural networks[J]. Journal of Computing, 2011, 3(2): 59-66.
[19] PATEL H. HinFlair: Pre-trained contextual string embeddings for POS tagging and text classification in the Hindi language[J]. arXiv preprint, arXiv: 2101.06949v1, 2021.
[20] SHARMA R, MORWAL S, AGARWAL B. Named entity recognition for Hindi language: A survey[J]. Journal of Discrete Mathematical Sciences and Cryptography, 2019, 22(4): 569-580.
[21] KAUR Y, KAUR E. Named entity recognition system for Hindi language using combination of rule based approach and list look up approach[J]. International Journal of Scientific Research and Management, 2015, 3(3): 2300-2306.
[22] SHAH D, BHADKA H. A survey on various approach used in named entity recognition for Indian languages[J]. International Journal of Computer Applications, 2017, 167(1): 11-18.
[23] SAHA S, MITRA P, SARKAR S. A comparative study on feature reduction approaches in Hindi and Bengali named entity recognition[J]. Knowledge-based Systems, 2012, 27: 322-332.
[24] SARKAR K. Hindi named entity recognition using system combination[J]. International Journal of Applied Pattern Recognition, 2018, 5(1): 11-39.
[25] BHATTACHARJEE K, SHIVA K, MEHTA S, et al. Named entity recognition: A survey for Indian languages[C]//Proceedings of the 2nd International Conference on Intelligent Computing, Instrumentation and Control Technologies, Kannur, Kerala, India, 2019: 217-220.
[26] ATHAVALE V, BHARADWAJ S, PAMECHA M, et al. Towards deep learning in Hindi NER: An approach to tackle the labelled data scarcity[J]. arXiv preprint arXiv: 1610.09756, 2016.
[27] SHARMA R, MORWAL S, AGARWAL B, et al. A deep neural network-based model for named entity recognition for Hindi language[J]. Neural Computing & Applications, 2020, 32: 16191-16203.
[28] GAYEN V, SARKAR K. An HMM based named entity recognition system for Indian languages: The JU system at ICON 2013[J]. arXiv preprint, arXiv: 1405.7397, 2014.
[29] MORWAL S, JAHAN N, CHOPRA D. Named entity recognition using hidden Markov model[J]. International Journal on Natural Language Computing, 2012, 1(4): 15-23.
[30] SRIVASTAVA S, SANGLIKAR M, KOTHARI D. Named entity recognition system for Hindi language: A hybrid approach[J]. International Journal of Computational Linguistics, 2011, 2(1): 10-23.
[31] EKBAL A, BANDYOPADHYAY S. A conditional random field approach for named entity recognition in Bengali and Hindi[J]. Linguistic Issues in Language Technology, 2009, 2(1): 1-44.
[32] SAHA S, SARKAR S, MITRA P. A hybrid feature set based maximum entropy Hindi named entity recognition[C]// Proceedings of the 3rd International joint Conference on Natural Language Processing, California, USA, 2008: 343-349.
[33] SAHA S, NARAYAN S, SARKAR S, et al. A composite kernel for named entity recognition[J]. Pattern Recognition Letters, 2010, 31(12): 1591-1597.
[34] BISWAS S, MISHRA M, SITANATH_BISWAS S, et al. A two stage language independent named entity recognition for Indian languages[J]. International Journal of Computer Science and Information Technologies, 2010, 1(4): 285-289.
[35] SINGH V, VIJAY D, AKHTAR S, et al. Named entity recognition for Hindi-English code-mixed social media text[C]// Proceedings of the 7th Named Entities Workshop, 2018: 27-35.
[36] BARATHI GANESH H, SOMAN K, RESHMA U, et al. Information extraction for conversational systems in Indian languages - Arnekt IECSIL[C]//Proceedings of the 10th Annual Meeting of the Forum for Information Retrieval Evaluation, ACM, New York, USA, 2018: 18-20.
[37] SAHA S, MAJUMDER M. Development of a Hindi named entity recognition system without using manually annotated training corpus[J]. Development, 2018, 1(13): 18-37.
[38] PALMER M, BHATT R, NARASIMHAN B, et al. Hindi syntax: Annotating dependency, lexical predicate argument structure, and phrase structure[C]//Proceedings of the 7th International Conference on Natural Language Processing, Macmillan Publisher, India, 2009: 14-17.
[39] BHARATI A, GUPTA M, YADAV V, et al. Simple Parser for Indian languages in a dependency framework[C]// Proceedings of the 3rd Linguistic Annotation Workshop, Suntec, Singapore, 2009: 162-165.
[40] GUPTA M, YADAV V, HUSAIN S, et al. Partial parsing as a method to expedite dependency annotation of a Hindi treebank[C]// Proceedings of the 7th International Conference on Language Resources and Evaluation, LREC, 2010: 1930-1935.
[41] GOUTAM R. Exploring self-training and co-training for Hindi dependency parsing using partial parses[C] // Proceedings of the International Conference on Asian Language Processing, Hanoi, Vietnam, 2012: 37-40.
[42] BHAT R, BHATT R, FARUDI A, et al. The Hindi/Urdu treebank project[M]//Ide, N., Pustejovsky, J. Handbook of Linguistic Annotation, Springer, Amsterdam, 2017: 659-697.
[43] BHAT R, BHAT I, SHARMA D. Improving transition-based dependency parsing of Hindi and Urdu by modeling syntactically relevant phenomena[J]. ACM Transactions on Asian and Low-resource Language Information Processing, 2017, 16(3): 1-35.
[44] SAHA A, SARKAR S. Enhancing neural network based dependency parsing using morphological information for Hindi[C]// Proceedings of the International Conference on Intelligent Text Processing & Computational Linguistics, Springer, Cham, 2018: 366-377.
[45] KHAPRA M, BHATTACHARYYA P, CHAUHAN S, et al. Domain specific iterative word sense disambiguation in a multilingual setting[C]//Proceedings of International Conference on Natural Language Processing, Macmillan Publishers, India, 2008: 1-11.
[46] SINGH S, SIDDIQUI T. Evaluating effect of context window size, stemming and stop word removal on Hindi word sense disambiguation [C]//Proceedings of the International Conference on Information Retrieval & Knowledge Management, Kuala Lumpur, 2012: 1-5.
[47] SINGH S, SIDDIQUI T. Role of semantic relations in Hindi word sense disambiguation[J]. Procedia Computer Science, 2015,45: 240-248.
[48] SHARMA P, JOSHI N. Knowledge-based method for word sense disambiguation by using Hindi WordNet[J]. Engineering, Technology & Applied Science Research, 2019,9(2): 3985-3989.
[49] JAIN A, LOBIYAL D. Fuzzy Hindi WordNet and word sense disambiguation using fuzzy graph connectivity measures[J]. ACM Transactions on Asian and Low-resource Language Information Processing, 2015, 15(2): 1-31.
[50] JAIN G, LOBIYAL D. Word sense disambiguation of Hindi text using fuzzified semantic relations and fuzzy Hindi WordNet[C]//Proceedings of the 9th International Conference on Cloud Computing, Data Science & Engineering, Noida, India, 2019: 494-497.
[51] DWIVEDI S, VIKRAM S. Word sense ambiguity in question sentence translation: A review[C]// Proceedings of the International Conference on Information and Communication Technology for Intelligent Systems, Springer, 2018, 84: 64-71.
[52] JAIN A, LOBIYAL D. A New approach for unsupervised word sense disambiguation in Hindi language using graph connectivity measures[J]. International Journal of Artificial Intelligence & Soft Computing, 2014, 4(4): 318-334.
[53] SINGH S, SIDDIQUI T. Role of Karaka relations in Hindi word sense disambiguation[J]. Journal of Information Technology Research, 2015, 8(3): 21-42.
[54] SAWHNEY R, KAUR A. A modified technique for word sense disambiguation using Lesk algorithm in Hindi language[C]//Proceedings of the International Conference on Advances in Computing, Communications and Informatics, New Delhi, 2014: 2745-2749.
[55] PATEL N, PATEL B, PARIKH R, et al. Hierarchical clustering technique for word sense disambiguation using Hindi WordNet[C]//Proceedings of the 5th Nirma University International Conference on Engineering, Ahmedabad, 2015: 1-5.
[56] MISHRA N, SIDDIQUI T. An investigation to semi supervised approach for Hindi word sense disambiguation [C]//Proceedings of the Trends in Innovative Computing Intelligent Systems Design, 2012,12: 126-130.
[57] PURI S, SINGH S. Hindi text document classification system using SVM and fuzzy: A survey[J]. International Journal of Rough Sets and Date Analysis, 2018, 5(4): 1-31.
[58] DIAB D, HINDI K. Using differential evolution for fine tuning nave Bayesian classifiers and its application for text classification[J]. Applied Soft Computing, 2016, 54: 183-199.
[59] JOSHI R, GOEL P, JOSHI R. Deep learning for Hindi text classification: A Comparison[C]//Proceedings of the International Conference on Intelligent Human Computer Interaction, Allahabad, India, 2019: 94-111.
[60] GUPTA S, KHADE N. BERT based multilingual machine comprehension in English and Hindi[J]. arXiv preprint, arXiv: 2011.03435,2020.
[61] CHAKRAVARTHY S, UMAPATHY A, BLACK A. Detecting entailment in code-mixed Hindi-English conversations[C]//Proceedings of the 6th Workshop on Noisy User-Generated Text, Association for Computational Linguistics, 2020: 165-170.
[62] VISHWAKARMA S, LAKHTARIA K, BHATNAGAR D, et al. Monolingual information retrieval using terrier: FIRE 2010 experiments based on N-gram indexing[J]. Procedia Computer Science, 2015, 57: 815-820.
[63] SHARMA V, MITTAL N. Refined stop-words and morphological variants solutions applied to Hindi-English cross-lingual information retrieval[J]. Journal of Intelligent & Fuzzy Systems, 2019, 36: 2219-222.
[64] JAGARLAMUDI J, KUMARAN A. Cross-lingual information retrieval system for Indian languages[C]// Proceedings of the Advances in Multilingual & Multimodal Information Retrieval, Workshop of the Cross-language Evaluation Forum, Clef, Budapest, Hungary, 2007: 80-87.
[65] CHAKMA K, DAS A. CMIR: A corpus for evaluation of code mixed information retrieval of Hindi-English tweets[J]. Computacion Y Sistemas, 2016, 20(3): 425-434.
[66] VARSHNEY S, BAJPAI J. Improving retrieval performance of English-Hindi based cross-language information retrieval[C]//Proceedings of the IEEE International Conference in MOOC, Innovation & Technology in Education, Jaipur, IEEE, 2013: 300-305.
[67] KATTA E, ARORA A. An improved approach to English-Hindi based cross language information retrieval system[C]//Proceedings of the 8th International Conference on Contemporary Computing, Noida, 2015: 354-359.
[68] CHANDRA G, DWIVEDI S. Query expansion for effective retrieval results of Hindi-English cross-lingual IR[J]. Applied Artificial Intelligence, 2019, 33(5-8): 567-593.
[69] BHATTACHARYA P, GOYAL P, SARKAR S. Using word embeddings for query translation for Hindi to English cross language information retrieval[J]. ACM Transactions on Asian and Low-resource Language Information Processing, 2018, 18(1): 1-27.
[70] KALYANI A, SAJJA P. A review of machine translation systems in India and different translation evaluation methodologies[J]. International Journal of Computer Applications, 2015, 121(23): 16-23.
[71] SRIVASTAVA J, SANYAL S, SRIVASTAVA A. Extraction of reordering rules for statistical machine translation[J]. Journal of Intelligent & Fuzzy Systems, 2019, 36(5): 4809-4819.
[72] JADOON N, ANWAR W, BAJWA U, et al. Statistical machine translation of Indian languages: A survey[J]. Neural Computing and Applications, 2019, 31(7): 2455-2467.
[73] MALL S, JAISWAL U. Developing a system for machine translation from Hindi language to English language[C]//Proceedings of the IEEE 4th International Conference on Computer and Communication Technology, IEEE, 2013: 79-87.
[74] KHAN S, USMAN I. A model for English to Urdu and Hindi machine translation system using translation rules and artificial neural network[J]. International Arab Journal of Information Technology, 2019, 16(1): 125-131.
[75] CHATTERJEE N, GUPTA S. Efficient phrase table pruning for Hindi to English machine translation through syntactic and marker-based filtering and hybrid similarity measurement[J]. Natural Language Engineering, 2019, 25(1): 171-210.
[76] GUPTA P, COSTA-JUSSA M, ROSSO P, et al. A deep source-context feature for lexical selection in statistical machine translation[J]. Pattern Recognition letters, 2016, 75(1): 24-29.
[77] KUMAR M, PREMJITH B, SINGH S, et al. An overview of the shared task on machine translation in Indian languages (MTIL)-2017[J]. Journal of Intelligent Systems, 2019, 28(3): 455-464.
[78] ARORA K, AGRAWAL S. Pre-processing of English-Hindi corpus for statistical machine translation[J]. Computación Y Sistemas. 2017, 21(4): 725-737.
[79] BANIKD, EKBAL A, BHATTACHARYYA P. Machine learning based optimized pruning approach for decoding in statistical machine translation[J]. IEEE Access, 2019, 7: 1736-1751.
[80] JOHNSON M, SCHUSTER M, LE Q, et al. Googles multilingual neural machine translation system: Enabling zero-shot translation[J]. arXiv: 1611.04558,2016.
[81] NAGARHALLI T, VAZE V, RANA N. A novel framework for neural machine translation of Indian-English languages[C]//Proceedings of the International Conference on Inventive Computation Technologies, Coimbatore, India, 2020: 676-682.
[82] NARAYAN R, CHAKRAVERTY S, SINGH V. Quantum neural network based machine translator for English to Hindi[J]. Applied Soft Computing, 2016, 38: 1060-1075.
[83] PREMJITH B, KUMAR M, SOMAN K. Neural machine translation system for English to Indian language translation using MTIL parallel corpus[J]. Journal of Intelligent Systems, 2019, 28(3): 387-398.
[84] SAINI S, SAHULA V. Neural machine translation for English to Hindi[J]. Journal of Intelligent & Fuzzy Systems, 2020, 39(2): 2071-2079.
[85] TIWARI G, SHARMA A, Sahotra A, et al. English-Hindi neural machine translation-LSTM Seq2Seq and ConvS2S[C]//Proceedings of the IEEE International Conference on Communication and Signal Processing, 2020: 871-875.
[86] BANIK D, EKBAL A, BHATTACHARYYA P, et al. Assembling translations from multi-engine machine translation outputs[J]. Applied Soft Computing, 2019, 78: 230-239.
[87] LIU Y, GU J, GOYAL N, et al. Multilingual denoising pre-training for neural machine translation[J]. arXiv preprint arXiv: 2001.08210,2020.
[88] JAWAHAR G, NAGOUDI E, ABDUL-MAGEED M, et al. Exploring text-to-text transformers for English to Hinglish machine translation with synthetic code-mixing[J]. arXiv preprint arXiv: 2105.08807, 2021.
[89] GAUTAM D, KODALI P, GUPTA K, et al. CoMeT: Towards code-mixed translation using parallel monolingual sentences[C]//Proceedings of the 5th Workshop on Computational Approaches to Linguistic Code-Switching, Association for Computational Linguistics, 2021: 47-55.
[90] GAUTAM D, GUPTA K, SHRIVASTAVA M. Translate and classify: Improving sequence level classification for English-Hindi code-mixed data[C]//Proceedings of the 5th Workshop on Computational Approaches to Linguistic Code-Switching, Association for Computational Linguistics, 2021: 15-25.
[91] SEKI K. Cross-lingual text similarity exploiting neural machine translation models[J]. Journal of Information Science, 2020,47(3): 016555152091267.
[92] SHARMA V, MITTAL N. An improvement in statistical machine translation in perspective of Hindi-English cross-lingual information retrieval[J]. Computation Sistemas, 2018, 22(4): 1277-1285.
[93] AKHTAR M, EKBAL A, BHATTACHARYYA P. Aspect based sentiment analysis in Hindi: Resource creation and evaluation[C]//Proceedings of the 10th International Conference on Language Resources and Evaluation, Portoro, Slove-nia,2016: 2703-2709.
[94] GARG K, LOBIYAL D. Hindi EmotionNet: Scalable emotion lexicon for sentiment classification of Hindi text[J]. ACM Transactions on Asian & Low-resource Language Information Processing, 2020, 19(4): 1-35.
[95] PUNDLIK S, DASARE P, KASBEKAR P, et al. Multiclass classification and class based sentiment analysis for Hindi language[C]//Proceedings of the International Conference on Advances in Computing, Communications and Informatics, Jaipur, 2016: 512-518.
[96] VANDANA J, SAVITHA R, DEEPA S, et al. A novel sentiment aware dictionary for multi-domain sentiment classification[J]. Computers and Electrical Engineering, 2018, 69(6): 585-597.
[97] NANDA C, DUA M, NANDA G. Sentiment analysis of movie reviews in Hindi language using machine learning[C]//Proceedings of the International Conference on Communication and Signal Processing, Chennai, 2018: 1069-1072.
[98] SARKAR K. Heterogeneous classifier ensemble for sentiment analysis of Bengali and Hindi tweets[J]. Sadhana, 2020, 45(196): 1-17.
[99] AKHTAR M, GARG T, EKBAL A. Multi-task learning for aspect term extraction and aspect sentiment classification[J]. Neurocomputing, 2020, 398: 247-257.
[100] SESHADRI S, MADASAMY A, PADANNAYIL S. Analyzing sentiment in Indian languages micro text using recurrent neural network[J]. IIOAB Journal, 2016(7): 313-318.
[101] SHALINI K, GANESH H, KUMAR M, et al. Sentiment analysis for code-mixed Indian social media text with distributed representation[C]//Proceedings of the International Conference on Advances in Computing, Communications and Informatics, Bangalore, 2018: 1126-1131.
[102] RANI S, KUMAR P. Deep learning based sentiment analysis using convolution neural network[J]. Arabian Journal for Science and Engineering, 2019, 44(4): 3305-3314.
[103] BHARGAVA R, ARORA S, SHARMA Y. Neural network-based architecture for sentiment analysis in Indian languages[J]. Journal of Intelligent Systems, 2019, 28(3): 361-375.
[104] JAMATIA A, SWAMY S, GAMBCK B, et al. Deep learning based sentiment analysis in a code-mixed English-Hindi and English-Bengali social media corpus[J]. International Journal on Artificial Intelligence Tools, 2020, 29(5): 2050014-1~2050014-27.
[105] IMPANA P, KALLIMANI J. Cross-lingual sentiment analysis for Indian regional languages [C]//Proceedings of the International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques, Mysuru, 2017: 1-6.
[106] VIJAY S, RAI V, GUPTA S, et al. Extractive text summarization in Hindi[C]//Proceedings of the International Conference on Asian Language Processing, Singapore, 2017: 318-321.
[107] YADAV D, KUMAR K. An improvised extractive approach to Hindi text summarization[C]//Proceedings of the 2nd International Conference on Information Systems Design and Intelligent Applications, Kalyani, India, 2015, 39: 291-300.
[108] KUMAR K, DIVAKAR Y, ARUN S. Graph based technique for Hindi text summarization[C]//Proceedings of the 2nd International Conference on Information Systems Design and Intelligent Applications, Kalyani, India, 2015, 39: 301-310.
[109] VERMA P, PAL S, OM H. A comparative analysis on Hindi and English extractive text summarization[J]. ACM Transactions on Asian and Low Resource Language Information Processing, 2019,18(3): 1-30.
[110] RANI R, LOBIYAL D. an extractive text summarization approach using tagged-LDA based topic modeling[J]. Multimedia Tools and Applications, 2020,(1): 1-31.
[111] SUNITHA C, JAYA A, GANESH A. A study on abstractive summarization techniques in Indian languages[J]. Procedia Computer Science, 2016, 87: 25-31.
[112] DALAL V, MALIK L. Semantic graph based automatic text summarization for Hindi documents using particle swarm optimization[C]//Proceedings of the 2nd International Conference on Information and Communication Technology for Intelligent Systems, Ahmedabad, India, 2018, 84: 284-289.
[113] SINGH S, KUMAR A, MANGAL A, et al. Bilingual automatic text summarization using unsupervised deep learning[C]//Proceedings of the International Conference on Electrical, Electronics, and Optimization Techniques, Chennai, 2016: 1195-1200.
[114] GULATI A, SAWARKAR S. A novel technique for multidocument Hindi text summarization[C]//Proceedings of the International Conference on Nascent Technologies in Engineering, Navi Mumbai, 2017: 1-6.

基金

广东省科技计划项目(2019A101002108);广州市科技计划项目(202002030227);广东省普通高校重点领域项目(2019KZDZX1016)
PDF(2565 KB)

1374

Accesses

0

Citation

Detail

段落导航
相关文章

/