图卷积神经网络GCN已经广泛应用于文本分类任务中,但GCN在文本分类时仅仅根据词语的共现关系来构建文本图,忽略了文本语言本身的规律关系,如语义关系与句法关系,并且GCN不善于提取文本上下文特征和序列特征。针对上述问题,该文提出了一种文本分类模型SEB-GCN,其在文本词共现图的基础上加入了句法文本图与语义文本图, 再引入ERNIE和残差双层BiGRU网络来对文本特征进行更深入的学习,从而提高模型的分类效果。实验结果表明,该文提出的SEB-GCN模型在四个新闻数据集上,分类精确度对比其他模型分别提高4.77%、4.4%、4.8%、3.4%、3%,且分类收敛速度也明显快于其他模型。
Abstract
Graph convolutional neural network (GCN) has been widely used in text classification tasks., which are mostly built by the co-occurrence relationship of words in text classification. To capture the semantic relationship and syntactic relationship in a text, this paper proposes a text classification model SEB-GCN that introduce syntactic text graph and semantic text graph on the basis of text word co-occurrence graph. It then adopts ERNIE and residual bi-layer BiGRU network to capture text features. Experimental results show that the classification accuracy of the proposed SEB-GCN model is superior to other models on four news datasets.
关键词
文本分类 /
图卷积神经网络 /
语义文本图 /
句法文本图 /
残差
{{custom_keyword}} /
Key words
text classification /
graphconvolutional neural networks /
semantic text graph /
syntactic text graph /
residuals
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] JOACHIMS T. Text categorization with support vector machines: Learning with many relevant features[C]//Proceedings of the European Conference on Machine Learning. Springer, Berlin, Heidelberg, 1998: 137-142.
[2] 潘忠英. 朴素贝叶斯中文文本分类器的设计与实现[J].电脑编程技巧与维护,2021(02):37-39,70.
[3] KIM Y. Convolutional neural network for sentence classification[C]//Proceedings of the EMNLP, 2014:1746-1751.
[4] ZHANG H, XIAO L, WANG Y, et al. A generalized recurrent neural architecture for text classification with multi-task learning[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence, 2017: 3385-3391.
[5] GENFFREY E. H. Dynamic routing between Capsules [C]//Proceedings of the 31st Conference on Neural Information Processing Systems, 2017: 1-11.
[6] GRAVES A. Long short-term memory[J]. Supervised Sequence Labelling with Recurrent Neural Networks, 2012: 37-45.
[7] CHO K, VAN MERRINBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of the EMNLP,2014:1724-1734.
[8] BATTAGLIA P W, HAMRICK J B, BAPST V, et al. Relational inductive biases, deep learning, and graph networks[J]. arXiv preprint arXiv:1806.01261, 2018.
[9] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[C]//Proceedings of the ICLR, 2017:1-14.
[10] ROUSSEAU F, KIAGIAS E, VAZIRGIANNIS M. Text categorization as a graph classification problem[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, 2015: 1702-1712.
[11] LUO Y, UZUNER , SZOLOVITS P. Bridging semantics and syntax with graph algorithms: State-of-the-art of extracting biomedical relations[J]. Briefings in Bioinformatics, 2017, 18(1): 160-178.
[12] TANG D, QIN B, LIU T. Document modeling with gated recurrent neural network for sentiment classification[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2015: 1422-1432.
[13] YANG Z, YANG D, DYER C, et al. Hierarchical attention networks for document classification[C]//Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2016: 1480-1489.
[14] WANG Y, HUANG M, ZHU X, et al. Attention-based LSTM for aspect-level sentiment classification[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2016: 606-615.
[15] DONG Y, LIU P, ZHU Z, et al. A fusion model-based label embedding and self-interaction attention for text classification[J]. IEEE Access, 2019, 8: 30548-30559.
[16] DEVLIN J, CHANG M W, LEE K, et al. Bert: Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the NAACL,2019:4171-4186.
[17] PETERS M, NEUMANN M, IYYER M, et al. Deep contextualized word representations[C]//Proceedings of the NAACL, 2018:2227-2237.
[18] SUN Y,WANG S,LI Y,et al. ERNIE: Enhanced representation through knowledge integration[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Stroudsburg, PA: Association for Computational Linguistics, 2019:1441-1451.
[19] VELICˇKOVIC' P, CUCURULL G, CASANOVA A, et al. Graph attention networks[C]//Proceedings of the IUR,2018:1-12.
[20] XU K, BA J, KIROS R, et al. Show, attend and tell: Neural image caption generation with visual attention[C]//Proceedings of the International Conference on Machine Learning. PMLR, 2015: 2048-2057.
[21] YAO L, MAO C, LUO Y. Graph convolutional networks for text classification[C]//Proceedings of the
AAAI Conference on Artificial Intelligence, 2019, 33(01): 7370-7377.
[22] ZHENBO B, SHIYOU Z, HONGJUN P, et al. A survey of preprocessing methods for marine Ship Target Detection based on video surveillance[C]//Proceedings of the 7th International Conference on Computing and Artificial Intelligence, 2021: 1-7.
[23] LU Z, DU P, NIE J Y. VGCN-BERT: Augmenting BERT with graph embedding for text classification[C]//Proceedings of the European Conference on Information Retrieval. Springer, Cham, 2020: 369-382.
[24] 靳义林. 基于多模型融合的新闻文本分类研究[D].重庆: 重庆邮电大学硕士学位论文,2019.
[25] 高旭洋. 基于ERNIE和TextGCN的文本分类研究与实现[D]. 开封: 河南大学硕士学位论文,2022.
[26] LIU X,YOU X,ZHANG X,et al.Tensor graph convolutional networks for text classification[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence, 2020: 8409-8416.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
上海市自然科学基金(21ZR1450200)
{{custom_fund}}