[1] LI J, SUN A, HAN J, et al. A survey on deep learning for named entity recognition[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 34(1): 50-70.
[2] LEE S H, JANG D P, SUNG K K, et al. Donguibogam-based pattern diagnosis using natural language processing and machine learning[J]. Journal of Korean Medicine, 2020, 41(3): 1-8.
[3] 李光日. 关于中国朝鲜语和韩国语的隔写法[J]. 中国朝鲜语文,2022,240(04): 74-81.
[4] AN J, KIM H W. Building a Korean sentiment lexicon using collective intelligence[J]. Journal of Intelligence and Information Systems, 2015, 21(2): 49-67.
[5] LEE D Y, YU W, LIM H S. Bi-directional lstm-cnn-crf for Korean named entity recognition system with feature augmentation[J]. Journal of the Korea Convergence Society, 2017, 8(12): 55-62.
[6] SHORTEN C, KHOSHGOFTAAR T M. A survey on image data augmentation for deep learning[J]. Journal of Big Data, 2019, 6(1): 1-48.
[7] KIM H, YANG S, KO Y. How to utilize syllable distribution patterns as the input of LSTM for Korean morphological analysis[J]. Pattern Recognition Letters, 2019, 120: 39-45.
[8] NA S H, KIM H, MIN J, et al. Improving LSTM CRFs using character-based compositions for Korean named entity recognition[J]. Computer Speech & Language, 2019, 54: 106-121.
[9] OH H S, LEE H. Named entity recognition for pet disease Q & A system[J]. Journal of Digital Contents Society, 2022, 23(4): 765-771.
[10] ZHOU G, SU J. Named entity recognition using an HMM-based chunk tagger[C]//Proceedings of the 40th Annual Meeting on Association for Computational Linguistics. Association for Computational Linguistics, 2002: 473-480.
[11] ISOZAKI H, KAZAWA H. Efficient support vector classifiers for named entity recognition[C]//Proceedings of the COLING: The 19th International Conference on Computational Linguistics, 2002.
[12] LIN Y F, TSAI T H, CHOU W C, et al. A maximum entropy approach to biomedical named entity recognition[C]//Proceedings of the 4th International Conference on Data Mining in Bioinformatics, Seattle, Washington, USA, 2004: 56-61.
[13] HUANG Z, XU W, YU K. Bidirectional LSTM-CRF models for sequence tagging[J/OL]. arXiv preprint arXiv:1508.01991, 2015: 1-10.
[14] YAO L, LIU H, LIU Y, et al. Biomedical named entity recognition based on deep neutral network[J]. Int. J. Hybrid inf. Technol, 2015, 8(8): 279-288.
[15] CHIU J P C, NICHOLS E. Named entity recognition with bidirectional LSTM-CNNs[J]. Transactions of the Association for Computational Linguistics, 2016, 4: 357-370.
[16] KWON S, KO Y, SEO J. Effective vector representation for the Korean named-entity recognition[J]. Pattern Recognition Letters, 2019, 117: 52-57.
[17] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the Advances in Neural Information Processing Systems, 2017, 30: 5998-6008.
[18] YAN H, DENG B, LI X, et al. TENER: Adapting transformer encoder for named entity recognition[J/OL]. arXiv preprint arXiv:1911.04474, 2019.
[19] DEVLIN J, CHANG M W, LEE K, et al. Bert: Pre-training of deep bidirectional transformers for language understandding[J/OL]. arXiv preprint arXiv:1810.04805, 2018.
[20] 杨飘,董文永. 基于BERT嵌入的中文命名实体识别方法[J]. 计算机工程,2020,46(04): 40-45.
[21] PARK S, MOON J, KIM S, et al. KLUE: Korean language understanding evaluation[J/OL]. arXiv preprint arXiv:2105. 09680, 2021.
[22]

[M].

.2006, 58-63.
[23] 金永寿.中国朝鲜语规范原则与规范细则研究[M]. 北京: 人民出版社,2012: 50-55.
[24] NAM S H. Fraudulent transaction detection in secondhand product market platform using dialogue data[D]. Master thesis, Seoul: Seoul National University, 2020.
[25] GRAVE E, BOJANOWSKI P, GUPTA P, et al. Learning word vectors for 157 languages[J/OL]. arXiv preprint arXiv:1802. 06893, 2018: 1-5.
[26] CHOI H, KWON S, SEO J. Korean named entity recognition using clustered according to part of speech[C]//Proceedings of HCI KOREA, 2016: 397-400.
[27] NAM S, HAHM Y, CHOI K S. Application of word vector with Korean specific feature to Bi-LSTM model for named entity recognition[C]//Proceedings of the Annual Conference on Human and Language Technology. Human and Language Technology, 2017: 147-150.
[28] YU H, KO Y. Expansion of word representation for named entity recognition based on bidirectional LSTM CRFs[J]. Journal of KIISE, 2017, 44(3): 306-313.
[29] JIN G, YU Z. A Korean named entity recognition method using Bi-LSTM-CRF and masked self-attention[J]. Computer Speech & Language, 2021, 65: 101-134.