用户建模已经引起了学术界和工业界的广泛关注。现有的方法大多侧重于将用户间的人际关系融入社区,而用户生成的内容(如帖子)却没有得到很好的研究。为此,该文通过实际舆情传播相关的分析,表明在舆情传播过程中对用户属性进行研究的重要作用,并且提出了用户资料数据的筛选方法。同时,该文提出了一种通过异构多质心图池为用户捕获更多不同社区特征的建模。该方法首先构造了一个由用户和关键字组成的异质图,并在其上采用了一个异质图神经网络。为了方便用户建模的图表示,提出了一种多质心图池化机制,将多质心的集群特征融入表示学习中。在三个基准数据集上的大量实验表明了该方法的有效性。
Abstract
User modeling has attracted great attention in both academia and industry. Most of the existing approaches are focused on incorporating the personal relationships in communities, while the users’ generated content such as posts is not well utilized. In this paper, we show that the research on user attributes plays an important role in the process of public opinion dissemination, and propose a screening method of user data. Meanwhile, we propose an approach to capture more diverse community characteristics via heterogeneous multi-centroid graph pooling for user modeling. Specifically, we construct a heterogeneous graph where the nodes consist of both users and keywords and adopt a heterogeneous GCN on it. To facilitate the graph representation for user modeling, we then propose a multi-centroid graph pooling mechanism, which incorporates the affiliated group features with multiple centroids into representation learning. Extensive experiments on three benchmark datasets show the effectiveness of our proposed approach.
关键词
图神经网络 /
社交网络分析 /
用户建模
{{custom_keyword}} /
Key words
graph neural networks /
social network analysis /
user modeling
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] DIEHL F. Edge contraction pooling for graph neural networks[J].arXiv preprint arXiv: 1905.10990, 2019.
[2] HASANUZZA MAN M, KAMILA S, KAUR M, et al. Temporal orientation of tweets for predicting income of users[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, 2017.
[3] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
[4] GU H, JIE W, WANG Z, et al. Modeling of user portrait through social media[C]//Proceedings of the IEEE International Conference on Multimedia and Expo. IEEE, 2018: 1-6.
[5] KANAVOS A,LIVIERIS I E. Fuzzy information diffusion in twitter by considering user’s Influence[J]. International Journal on Artificial Intelligence Tools, 2020, 29(02): 2040003.
[6] EL BACHA R, ZIN TT. Ranking of influential users based on user-tweet bipartite graph[C]//Proceedings of the IEEE International Conference on Service Operations and Logistics, and Informatics. IEEE, 2018: 97-101.
[7] LI P, ZHAO W, YANG J, et al. Let’s corank: Trust of users and tweets on social networks[C]//Proceedings of the World Wide Web, 2020: 1-25.
[8] BRUNA J, ZAREMBA W,SZLAM A, et al. Spectral networks and locally connected networks on graphs[J]. arXiv preprint arXiv: 1312.6203, 2013.
[9] DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[C]//Proceedings of the 29th International Conference on Neural Information Processing Systems, 2016, 29: 3844-3852.
[10] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[C]//Proceedings of ICLK,2017: 1-14.
[11] LI R, WANG S, ZHU F, et al. Adaptive graph convolutional neural networks[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence, 2018, 32: 3546-3553.
[12] CHIANG W L, LIU X, SI S, et al. Cluster-gcn: An efficient algorithm for training deep and large graph convolutional networks[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019: 257-266.
[13] ZHOU J, CUI G, HU S, et al. Graph neural networks: A review of methods and applications[J]. AI Open, 2020, 1: 57-81.
[14] WU Z, PAN S, CHEN F, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32(1): 4-24.
[15] SHI C, LI Y, ZHANG J, et al. A survey of heterogeneous information network analysis[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 29(1): 17-37.
[16] JI M, SUN Y,DANILEVSKY M, et al. Graph regularized transductive classification on heterogeneous information networks[C]//Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer, Berlin, Heidelberg, 2010: 570-586.
[17] JACOB Y,DENOYER L, GALLINARI P. Learning latent representations of nodes for classifying in heterogeneous social networks[C]//Proceedings of the 7th ACM International Conference on Web Search and Data mining, 2014: 373-382.
[18] ROSSI R G, DE PAULOFALEIROS T, DE ANDRADE LOPES A, et al. Inductive model generation for text categorization using a bipartite heterogeneous network[C]//Proceedings of the 12th International Conference on Data Mining. IEEE, 2012: 1086-1091.
[19] YING R, YOU J, MORRIS C, et al. Hierarchical graph representation learning with differentiable pooling[C]//Proceedings of the 32nd Conference on Neural formation Processing Systems, 2018: 4805-4815.
[20] ZHANG M, CUI Z, NEUMANN M, et al. An end-to-end deep learning architecture for graph classification[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence, 2018: 4438-4445.
[21] GAO H, JI S. Graph u-nets[C]//Proceedings of the International Conference on Machine Learning. PMLR, 2019: 2083-2092.
[22] ZUKERMAN I, ALBRECHT D W. Predictive statistical models for user modeling[J]. User Modeling and User-Adapted Interaction, 2001, 11(1): 5-18.
[23] FINK J,KOBSA A, NILL A. Adaptable and adaptive information access for all users, including the disabled and the elderly[C]//Proceedings of the User Modeling. Springer, Vienna, 1997: 171-173.
[24] BRUSILOVSKY P, SCHWARZ E. User as student: Towards an adaptive interface for advanced web-based applications[C]//Proceedings of the User Modeling. Springer, Vienna, 1997: 177-188.
[25] QUIROGA L M, MOSTAFA J. Empirical evaluation of explicit versus implicit acquisition of user profiles in information filtering systems[C]//Proceedings of the 4th ACM Conference on Digital Libraries, 1999: 238-239.
[26] PREOTIUC-PIETRO D, VOLKOVA S, LAMPOS V, et al. Studying user income through language, behaviour and affect in social media[J]. Plos One, 2015, 10(9): e0138717.
[27] DUAN Y, CHEN Z, WEI F, et al. Twitter topic summarization by ranking tweets using social influence and content quality[C]//Proceedings of COLING, 2012: 763-780.
[28] LI S, ZHAO Z, HU R, et al. Analogical reasoning on Chinese morphological and semantic relations[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics,2018:138-143.
[29] WANG X, JI H, SHI C, et al. Heterogeneous graph attention network[C]//Proceedings of the World Wide Web Conference, 2019: 2022-2032.
[30] KINGMA D P, BA J. Adam: A method for stochastic optimization[C]//Proceedings of ICLK, 2015: 1-15.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}