表格问答研究综述

张洪廙,李韧,杨建喜,杨小霞,肖桥,蒋仕新,王笛

PDF(3839 KB)
PDF(3839 KB)
中文信息学报 ›› 2024, Vol. 38 ›› Issue (4) : 1-16.
综述

表格问答研究综述

  • 张洪廙,李韧,杨建喜,杨小霞,肖桥,蒋仕新,王笛
作者信息 +

Researches on Question Answering Over Tables: A Survey

  • ZHANG Hongyi, LI Ren, YANG Jianxi, YANG Xiaoxia, XIAO Qiao, JIANG Shixin, WANG Di
Author information +
History +

摘要

表格问答通过自然语言问句直接与表格数据进行交互并得到答案,是智能问答的主要形式之一。近年来,研究人员利用以语义解析为主的技术在该领域开展了深入研究。该文从不同表格类型分类及其问答任务问题定义出发,将表格问答细分为单表单轮、多表单轮、多表多轮式问答三种任务,并系统介绍了各类表格问答任务的数据集及其代表性方法。其次,该文总结了当前主流表格预训练模型的数据构造、输入编码以及预训练目标。最后,探讨当前工作的优势与不足,并分析了未来表格问答的前景与挑战。

Abstract

Table question answering (Table QA) directly gets answers form table data through natural language, which is one of the main forms of intelligent question answering. Recently, researchers pay great attention to resolve this task by semantic parsing. In this paper, we divide Table QA tasks into three types: single-table single-turn, multi-table single-turn, and multi-table multi-turn. This paper provides a systematic introduction to datasets and representative methods of various types of Table QA tasks. It also summarizes the data construction, input encoding, and pre-training objectives of the table pre-training models. Finally, we explore the strengths and weaknesses of current work, and discuss the future prospects and challenges of Table QA.

关键词

表格问答 / 语义解析 / 自然语言处理 / 综述

Key words

table question answering / semantic parsing / natural language processing / survey

引用本文

导出引用
张洪廙,李韧,杨建喜,杨小霞,肖桥,蒋仕新,王笛. 表格问答研究综述. 中文信息学报. 2024, 38(4): 1-16
ZHANG Hongyi, LI Ren, YANG Jianxi, YANG Xiaoxia, XIAO Qiao, JIANG Shixin, WANG Di. Researches on Question Answering Over Tables: A Survey. Journal of Chinese Information Processing. 2024, 38(4): 1-16

参考文献

[1] 高良才,李一博,都林,等.表格识别技术研究进展[J]. 中国图象图形学报,2022,27(06): 1898-1917.
[2] 马浩,戴国琳,刘新遥,等.医学知识图谱自动构建研究[J]. 医学信息,2022,35(04): 10-12.
[3] YANG J, XIANG F, LI R, et al. Intelligent bridge management via big data knowledge engineering[J]. Automation in Construction, 2022, 135: 104118.
[4] 梁清源,朱琪豪,孙泽宇,等.基于深度学习的SQL生成研究综述[J].中国科学(信息科学),2022, 52(08): 1363-1392.
[5] 郑泳智,朱定局,吴惠粦,等.知识图谱问答领域综述[J].计算机系统应用,2022,31(04): 1-13.
[6] THERASA M, MATHIVANAN G. Survey of machine reading comprehension models and its evaluation metrics[C]//Proceedings of the 6th International Conference on Computing Methodologies and Communication, 2022: 1006-1013.
[7] ZHONG V, XIONG C, SOCHER R. Seq2sql: Generating structured queries from natural language using reinforcement learning[J]. arXiv preprint arXiv:1709.00103, 2017.
[8] 李智,王震,杨赋庚,等.基于表格的自动问答研究与展望[J].计算机工程与应用,2021,57(13): 67-76.
[9] ZHANG S, BALOG K. Web table extraction, retrieval and augmentation: A survey[J]. ACM Transactions on Intelligent Systems and Technology, 2020, 11(2): 1-35.
[10] DONG H, CHENG Z, HE X, et al. Table pretraining: A survey on model architectures, pretraining objectives, and downstream tasks[J]. arXiv preprint arXiv:2201.09745, 2022.
[11] QIN B, HUI B, WANG L, et al. A survey on text-to-sql parsing: Concepts, methods, and future directions[J]. arXiv preprint arXiv:2208.13629, 2022.
[12] PASUPAT P, LIANG P. Compositional semantic parsing on semi-structured tables[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, 2015: 1470-1480.
[13] PRICE P.Evaluation of spoken language systems: The atis domain[C]//Proceedings of the 3rd Darpa Speech & Natural Language Workshop,1990: 24-27.
[14] SUN N, YANG X, LIU Y. TableQA: A large-scale Chinese text-to-sql dataset for table-aware sql generation[J]. arXiv preprint arXiv:2006.06434, 2020.
[15] CHEN Z, CHEN W, SMILEY C, et al. FinQA: A dataset of numerical reasoning over financial data[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2021: 3697-3711.
[16] ZHU F, LEI W, HUANG Y, et al. TAT-QA: A question answering benchmark on a hybrid of tabular and textual content in finance[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, 2021: 3277-3287.
[17] XU X, LIU C, SONG D. Sqlnet: Generating structured queries from natural language without reinforcement learning[J]. arXiv preprint arXiv:1711.04436, 2017.
[18] DONG L, LAPATA M. Coarse-to-fine decoding for neural semantic parsing[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, 2018: 731-742.
[19] YU T, LI Z, ZHANG Z, et al. TypeSQL: Knowledge-based type-aware neural text-to-sql generation[C]//Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Association for Computational Linguistics, 2018: 588-594.
[20] YIN P, NEUBIG G, YIP W, et al. TaBERT: Pretraining for joint understanding of textual and tabular data[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020: 8413-8426.
[21] YU T, WU C, LIN X, et al. GraPPa: Grammar-augmented pre-training for table semantic parsing[C]//Proceedings of the International Conference on Learning Representations, 2020.
[22] XUAN K, WANG Y, WANG Y, et al. SeaD: End-to-end text-to-sql generation with schema-aware denoising[J]. arXiv preprint arXiv:2105.07911, 2021.
[23] LIU Q, CHEN B, GUO J, et al. TAPEX: Table pre-training via learning a neural sql executor[C]//Proceedings of the International Conference on Learning Representations, 2021: 1-16.
[24] HERZIG J, NOWAK P, MUELLER T, et al. TaPas: Weakly supervised table parsing via pre-training[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020: 4320-4333.
[25] WOODS W.The lunar sciences natural language information system[R].US: BBN Report, 1972: 1-388.
[26] DAS D, CHEN D, MARTINS A, et al. Frame-semantic parsing[J]. Computational Linguistics, 2014, 40(1): 9-56.
[27] POPESCU A, ETZIONI O, KAUTZ H. Towards a theory of natural language interfaces to databases[C]//Proceedings of the 8th International Conference on Intelligent User Interfaces, 2003.
[28] CHEN J, JIMéNEZ RUIZ E, HORROCKS I, et al. Colnet: Embedding the semantics of web tables for column type prediction[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(01): 29-36.
[29] GOL M, PUJARA J, SZEKELY P. Tabular cell classification using pre-trained cell embeddings[C]//Proceedings of the IEEE International Conference on Data Mining. IEEE, 2019: 230-239.
[30] YU T, ZHANG R, YANG K, et al. Spider: A large-scale human-labeled dataset for complex and cross-domain semantic parsing and text-to-sql task[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, 2020: 3911-3921.
[31] YU T, YASUNAGA M, YANG K, et al. SyntaxSQLNet: Syntax tree networks for complex and cross-domain text-to-sql task[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2018: 1653-1663.
[32] BOGIN B, BERANT J, GARDNER M. Representing schema structure with graph neural networks for text-to-sql parsing[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 2019: 4560-4565.
[33] BOGIN B, GARDNER M, BERANT J. Global reasoning over database structures for text-to-sql parsing[J]. arXiv preprint arXiv:1908.11214, 2019.
[34] 曹合心,赵亮,李雪峰. 图神经网络在 Text-to-SQL 解析中的技术研究[J]. 计算机科学, 2022, 49(4): 110-115.
[35] WANG B, SHIN R, LIU X, et al. RAT-SQL: Relation-aware schema encoding and linking for text-to-sql parsers[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020: 7567-7578.
[36] GUO J, ZHAN Z, GAO Y, et al. Towards complex text-to-sql in cross-domain database with intermediate representation[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 2019: 4524-4535.
[37] SHI P, NG P, WANG Z, et al. Learning contextual representations for semantic parsing with generation-augmented pre-training[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(15): 13806-13814.
[38] QIN B, WANG L, HUI B, et al. SDCUP: Schema dependency-enhanced curriculum pre-training for table semantic parsing[J]. arXiv preprint arXiv:2111.09486, 2021.
[39] HUO S, MA T, CHEN J, et al. Graph enhanced cross-domain text-to-sql generation[C]//Proceedings of the 13th Workshop on Graph-Based Methods for Natural Language Processing, 2019: 159-163.
[40] YU T, ZHANG R, YASUNAGA M, et al. SParC: Cross-domain semantic parsing in context[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 2019: 4511-4523.
[41] IYYER M, YIH W, CHANG M. Search-based neural structured learning for sequential question answering[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, 2017: 1821-1831.
[42] YU T, ZHANG R, ER H, et al. CoSQL: A conversational text-to-sql challenge towards cross-domain natural language interfaces to databases[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, 2019: 1962-1979.
[43] GUO J, SI Z, WANG Y, et al. CHASE: A large-scale and pragmatic Chinese dataset for cross-database context-dependent text-to-sql[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, 2021: 2316-2331.
[44] CHEN W, ZHA H, CHEN Z, et al. HybridQA: A dataset of multi-hop question answering over tabular and textual data[G]//Proceedings of the Association for Computational Linguistics, 2020: 1026-1036.
[45] ZHONG R, YU T, DAN K. Semantic evaluation for text-to-sql with distilled test suites[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2020: 396-411.
[46] MLLER T, PICCINNO F, NICOSIA M, et al. Answering conversational questions on structured data without logical forms[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, 2019:5902-5910.
[47] LIU Q, CHEN B, GUO J, et al. How far are we from effective context modeling?: An exploratory study on semantic parsing in context[C]//Proceedings of the 29th International Conference on International Joint Conferences on Artificial Intelligence, 2021.
[48] ZHANG R, YU T, ER H, et al. Editing-based sql query generation for cross-domain context-dependent questions[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Association for Computational Linguistics, 2020: 5338-5349.
[49] ZHENG Y, WANG H, DONG B, et al. HIE-SQL: History information enhanced network for context-dependent text-to-sql semantic parsing[G]//Proceedings of the Association for Computational Linguistics, 2022: 2997-3007.
[50] XIAO D, CHAI L, ZHANG Q, et al. CQR-SQL: Conversational question reformulation enhanced context-dependent text-to-sql parsers[J]. arXiv preprint arXiv: 2205.07686, 2022.
[51] EISENSCHLOS J, KRICHENE S, MUELLER T. Understanding tables with intermediate pre-training[G]//Proceedings of the Association for Computational Linguistics, 2020: 281-296.
[52] YANG J, GUPTA A, UPADHYAY S, et al. TableFormer: Robust transformer modeling for table-text encoding[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, 2022: 528-537.
[53] YU T, ZHANG R, POLOZOV A, et al. Score: Pre-training for context representation in conversational semantic parsing[C]//Proceedings of the International Conference on Learning Representations, 2020: 1-16.
[54] MISRA D, CHANG M, HE X, et al. Policy shaping and generalized update equations for semantic parsing from denotations[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2018: 2442-2452.
[55] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017.
[56] DEVLIN J, CHANG M, LEE K, et al. Bert: Pre-training of deep bidirectional transformers for language understanding[J]. arXiv preprint arXiv:1810.04805, 2018.
[57] RADFORD A, NARASIMHAN K, SALIMANS T, et al. Improving language understanding by generative pre-training[EB/OL]. https://cdn.openai.com/research-covers/Language-unsugervised/Langage-understandly-paper.pdf[2022-04-15]
[58] WANG C, TATWAWADI K, BROCKSCHMIDT M, et al. Robust text-to-sql generation with execution-guided decoding[J]. arXiv preprint arXiv:1807.03100, 2018.
[59] DENG X, HASSAN A, MEEK C, et al. Structure-Grounded Pretraining for Text-to-SQL[C]//Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2021: 1337-1350.
[60] IIDA H, THAI D, MANJUNATHA V, et al. TABBIE: Pretrained representations of tabular data[C]//Proceedings of the Conference of the North American Chapter of the Association for Computational Lin-guistics: Human Language Technologies,2021: 3446-3456.
[61] CHEMMENGATH S, KUMAR V, BHARADWAJ S, et al. Topic transferable table question answering[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing,2021: 4159-4172.
[62] BROWN T, MANN B, RYDER N, et al. Language models are few-shot learners[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems, 2020, 33: 1877-1901.
[63] RAFFEL C, SHAZEER N, ROBERTS A, et al. Exploring the limits of transfer learning with a unified text-to-text transformer[J]. Journal of Machine Learning Research, 2020, 21: 1-67.
[64] CHEN W, SU Y, YAN X, et al. KGPT: KnowleDGE-grounded pre-training for data-to-text generation[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2020: 8635-8648.
[65] GONG H, SUN Y, FENG X, et al. Tablegpt: Few-shot table-to-text generation with table structure reconstruction and content matching[C]//Proceedings of the 28th International Conference on Computational Linguistics, 2020: 1978-1988.
[66] EISENSCHLOS J, GOR M, MUELLER T, et al. MATE: Multi-view attention for table transformer efficiency [C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2021: 7606-7619.
[67] DAI Z, YANG Z, YANG Y, et al. Transformer-XL: Attentive language models beyond a fixed-length context[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 2019: 2978-2988.
[68] AINSLIE J, ONTANON S, ALBERTI C, et al. ETC: Encoding long and structured inputs in transformers[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2020: 268-284.
[69] 吕剑清,王先兵,陈刚,等.面向工业生产的中文Text-to-SQL模型[J].计算机应用,2022:1-8.
[70] MIN Q, SHI Y, ZHANG Y. A pilot study for Chinese sql semantic parsing[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, 2019: 3652-3658.
[71] WANG L, ZHANG A, WU K, et al. DuSQL: A large-scale and pragmatic Chinese text-to-sql dataset[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2020.

基金

国家自然科学基金(62003063);重庆市教委科学技术研究项目(KJQN202200720);重庆交通大学研究生科研创新项目(2023s0084)
PDF(3839 KB)

Accesses

Citation

Detail

段落导航
相关文章

/