融合文本摘要和情绪感知的抑郁倾向识别

季浩然,林鸿飞,杨亮,徐博

PDF(1622 KB)
PDF(1622 KB)
中文信息学报 ›› 2024, Vol. 38 ›› Issue (5) : 146-154.
情感分析与社会计算

融合文本摘要和情绪感知的抑郁倾向识别

  • 季浩然,林鸿飞,杨亮,徐博
作者信息 +

Depression Recognition by Conbining Summarization and Emotion Perception

  • JI Haoran, LIN Hongfei, YANG Liang, XU Bo
Author information +
History +

摘要

抑郁症作为世界第四大疾病,严重影响着人们的生理和心理健康。随着互联网的发展,社交媒体的发布内容已经成为研究精神疾病的重要数据源,研究者开始应用自然语言处理技术自动检测抑郁倾向。现存算法无法充分捕捉到长文本中的关键信息,忽略了对用户情绪状态的时序性建模,进而造成抑郁倾向识别性能不佳。该文提出一种融合文本摘要和情绪感知的抑郁倾向识别模型,首先利用文本摘要算法抽取用户历史文本的全局语义特征,在压缩文本长度的同时保留了与用户真实意图强相关的内容;然后利用词汇增强算法计算句子级的细粒度情绪表示,并结合深度神经网络捕获了用户的情绪变化特征。实验结果表明,该文提出的模型取得了更佳的识别效果,在抑郁倾向识别数据集上将检测结果的正类F1值提升至75.61%。

Abstract

As the fourth largest disease in the world, depression seriously affects people’s physiological and mental health. To apply natural language processing techniques to automatically detect depressed people, we propose a depression recognition model combining text summarization and emotion perception. First, we use the text summarization method to extract the global semantic features. Then we apply vocabulary enhancement methods to extract sentence-level emotional representation. Finally, we use deep neutral network to capture the emotion features. The results show our model achieves up to 75.61% positive F1.

关键词

抑郁倾向识别 / 自然语言处理 / 文本摘要 / 情绪感知

Key words

depression recognition / natural language processing / text summarization / emotion perception

引用本文

导出引用
季浩然,林鸿飞,杨亮,徐博. 融合文本摘要和情绪感知的抑郁倾向识别. 中文信息学报. 2024, 38(5): 146-154
JI Haoran, LIN Hongfei, YANG Liang, XU Bo. Depression Recognition by Conbining Summarization and Emotion Perception. Journal of Chinese Information Processing. 2024, 38(5): 146-154

参考文献

[1] Depression and other common mental disorders: Global health estimates. World Health Organization[EB/OL]https://apps.who.int/iris/bitstream/handle/10665/254610/WHO-MSD-MER-2017.2-eng.pdf [2021-06-28]
[2] HUSSAIN J, SATTI F A, AFZAL M, et al. Exploring the dominant features of social media for depression detection[J]. Journal of Information Science, 2020, 46(6): 739-759.
[3] TADESSE MM, LIN H, XU B,et al. Detection of depression-related posts in reddit social media forum[J]. IEEE Access, 2019(7): 44883-44893.
[4] PARK M, CHA C, CHA M. Depressive moods of users portrayed in twitter[A]. ACM SIGKDD Workshop on Healthcare Informatics. Beijing, China, 2012.
[5] TSUGAWA S, KIKUCHI Y, KISHINO F, et al. Recognizing depression from twitter activity[C]//Proceedings of the 33rd annual ACM Conference on Human Factors in Computing Systems, 2015: 3187-3196.
[6] YAZDAVAR A H, Al-OLIMAT H SEBRAHIMI M, et al. Semi-supervised approach to monitoring clinical depressive symptoms in social media[C]//Proceedings of the IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, 2017: 1191-1198.
[7] OGUZHAN T, FARZAD K. A survey automatic text summarization[M]. Press Academia Procedia, 2007: 205-213.
[8] GAUR M, ALAMBO A, SAIN J P, et al. Knowledge-aware assessment of severity of suicide risk for early intervention[C]//Proceedings of the World Wide Web Conference, 2019: 514-525.
[9] CAO L, ZHANG H, FENG L, et al. Latent suicide risk detection on microblog via suicide-oriented word embeddings and layered attention[J]. arXiv preprint arXiv: 1910.12038, 2019.
[10] CHOUDHURY M D, GAMON M, COUNTS S,et al. Predicting depression via social media[C]//Proceedings of the International AAAI Conference on Web and Social Media, 2013.
[11] TSUGAWA S, KIKUCHI Y, KISHINO F,et al. Recognizing depression from twitter activity[C]//Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, 2015: 3187-3196.
[12] ORABI A H, BUDDHITHA P, ORABI M H, et al. Deep learning for depression detection of Twitter users[C]//Proceedings of the 5th Workshop on Computational Linguistics and Clinical Psychology: From Keyboard to Clinic, 2018: 88-97.
[13] 査猛,叶宁,王汝传,等.基于胶囊网络模型的抑郁症预测研究[J].计算机技术与发展,2021,31(11): 28-34.
[14] 鲁小勇,石代敏,刘阳,等.注意力残差模型的语音抑郁倾向识别方法[J].小型微型计算机系统,2022,43(08): 1602-1608.
[15] MURARKA A, RADHAKRISHNAN B, RAVICHANDRAN S. Detection and classification of mental illnesses on social media using RoBERTa[J]. arXiv preprint arXiv: 2011.11226, 2020.
[16] ZHOU D, ZHANG X, ZHOU Y, et al. Emotion distribution learning from texts[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2016: 638-647.
[17] 周瑛,刘越,蔡俊.基于注意力机制的微博情感分析[J].情报理论与实践,2018,41(03): 89-94.
[18] ARAGN M E, et al. Detecting depression in social media using fine-grained emotions[C]//Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2019.
[19] ARAGON M E, LOPEZ-MONROY A P, GONZALEZ-GURROLA L C G, et al. Detecting mental disorders in social media through emotional patterns: The case of anorexia and depression[J]. IEEE Transactions on Affective Computing, 2021, 14(1): 211-222.
[20] LARA J S, ARAGN M E, GONZLEZ F A, et al. Deep bag-of-sub-emotions for depression detection in social media[C]//Proceedings of the International Conference on Text, Speech, and Dialogue. Springer, Cham, 2021: 60-72.
[21] SALIMINEN J, HOPF M, CHOWDHURY S A, et al. Developing an online hate classifier for multiple social media platforms[J]. Human-centric Computing and Information Sciences, 2020, 10: 1-34.
[22] DEVLIN J, CHANG M W, LEE K, et al. Bert: Pre-training of deep bidirectional transformers for language understanding[J]. arXiv preprint arXiv: 1810.04805, 2018.
[23] LIU P. NULI At SemEval Task 6: Transfer learning for ofensive language detection using bidirectional transformers[C]//Proceedings of the 13th International Workshop on Semantic Evaluation, Minneapolis, 2019: 87-91.
[24] NIKOLOV A, RADIVCHEV V. SemEval Task 6: Ofensive tweet classifcation with BERT and ensembles[C]//Proceedings of the 13th International Workshop on Semantic Evaluation, Minneapolis, 2019: 691-695.
[25] FRIEDRICH M. Depression is the leading cause of disability around the world[J]. JAMA, 2017, 317(15): 1517-1518.
[26] MOHAMMAD S, TURNEY P. Emotions evoked by common words and phrases: Using mechanical turk to create an emotion lexicon[C]//Proceedings of the NAACL HLT Workshop on Computational Approaches to Analysis and Generation of Emotion in Text, 2010: 26-34.
[27] CUI Y, JIA M, LIN T Y, et al. Class-balanced loss based on effective number of samples[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 9268-9277.
[28] LOSADA D E, CRESTANI F. A test collection for research on depression and language use[C]//Proceedings of the International Conference of the Cross-Language Evaluation Forum for European Languages. Springer, Cham, 2016: 28-39.
[29] LOSADA D, CRESTANI F, PARAPAR J. Overview of erisk: Early risk prediction on the internet[C]//Proceedings of the 9th International Conference of the CLEF Association, Avignon, France, 2018.
[30] VAPNIK V, GUYON I, HASTIE T. Support vector machines[J]. Mach Learn, 1995, 20(3): 273-297.
[31] KALCHBRENNER N, GREFENSTETTE E, BLUNSOM P. A convolutional neural network for modelling sentences[J]. arXiv preprint arXiv: 1404.2188, 2014.
[32] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Comput, 1997,9(8): 1735-1780.
[33] GRAVES A, JAITLY N, MOHAMED A. Hybrid speech recognition with deep bidirectional LSTM[C]//Proceedings of the IEEE Workshop on Automatic Speech Recognition and Understanding, IEEE, 2013: 273-278.
[34] YAN Y, LIU F, ZHUANG X, et al. An r-transformer_BiLSTM model based on attention for multi-label text classification[J]. Neural Processing Letters, 2022: 1-24.
[35] ANSARI L, JI S, CHEN Q, et al. Ensemble hybrid learning methods for automated depression detection[J]. IEEE Transactions on Computational Social Systems, 2022, 10(1): 211-219.
[36] KOTENKO I, YASH S, ALEXANDER B. Predicting the mental state of the social network users based on the latent dirichlet allocation and fastText[C]//Proceedings of the 11th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, IEEE, 2021.

基金

国家自然科学基金(62076046,62076051,62376051)
PDF(1622 KB)

517

Accesses

0

Citation

Detail

段落导航
相关文章

/