基于中文电子病历知识图谱的实体对齐研究

李丽双,董姜媛

PDF(3494 KB)
PDF(3494 KB)
中文信息学报 ›› 2024, Vol. 38 ›› Issue (8) : 103-111.
信息抽取与文本挖掘

基于中文电子病历知识图谱的实体对齐研究

  • 李丽双,董姜媛
作者信息 +

Entity Alignment Based on Knowledge Graph of Chinese Electronic Medical Record

  • LI Lishuang, DONG Jiangyuan
Author information +
History +

摘要

医疗知识图谱中知识重叠和互补的现象普遍存在,利用实体对齐进行医疗知识图谱融合成为迫切需要。然而据作者调研,目前医疗领域中的实体对齐尚没有一个完整的处理方案。因此该文提出了一个规范的基于中文电子病历的医疗知识图谱实体对齐流程,为医疗领域的实体对齐提供了一种可行的方案。同时针对基于中文电子病历医疗知识图谱之间结构异构性的特点,该文设计了一个双视角并行图神经网络(DuPNet)模型用于解决医疗领域实体对齐,并取得较好的效果。

Abstract

Entity alignment is essential to fuse the medical knowledge graphs since the phenomenon of knowledge overlap and complementarity is common in different medical knowledge graphs. However, according to our research, there is not yet a complete solution for entity alignment in the medical field. Therefore, we propose a standardized entity alignment process based on the Chinese electronic medical record knowledge graph, which provides a feasible scheme for entity alignment in the medical field. Meanwhile, according to the characteristic of the structural heterogeneity of the medical knowledge graph, we design a Dual-view Parallel Graph Neural Network (DuPNet) to solve the problem of entity alignment in the medical field, which achieves good results.

关键词

医疗知识图谱 / 中文电子病历 / 实体对齐 / 结构异构体 / 并行图神经网络

Key words

medical knowledge graph / Chinese electronic medical record / entity alignment / structual heterogeneity / parallel graph neural network

引用本文

导出引用
李丽双,董姜媛. 基于中文电子病历知识图谱的实体对齐研究. 中文信息学报. 2024, 38(8): 103-111
LI Lishuang, DONG Jiangyuan. Entity Alignment Based on Knowledge Graph of Chinese Electronic Medical Record. Journal of Chinese Information Processing. 2024, 38(8): 103-111

参考文献

[1] 奥德玛, 杨云飞, 穗志方, 等. 中文医学知识图谱CMeKG构建初探[J]. 中文信息学报,2019,33(10): 1-9.
[2] XIU X.Construction of a digestive system tumor knowledge graph based on chinese electronic medical records: Development and usability study[J].JMIR Med Inform, 2020, 8(10): e18287.
[3] 刘勘, 张雅荃.基于医疗知识图谱的并发症辅助诊断[J]. 中文信息学报, 2020, 34(10): 85-93.
[4] 刘道文, 阮彤, 张晨童, 等.基于多源知识图谱融合的智能导诊算法[J].中文信息学报, 2021, 35(01): 125-134.
[5] BHATTACHARYA I, GETOOR L.Collective entity resolution in relational data[J]. Association for Computing machinery,2007,1(1): 1-36.
[6] JIANG Y, WANG X, ZHENG H.A semantic similarity measure based on information distance for ontology alignment[J]. Information Sciences,2014,278:76-87.
[7] SONG X, ZHANG H, BAI L.Entity alignment between knowledge graphs using entity type matching[C]//Proceedings of the International Conference on Knowledge Science, Engineering and Management,2021: 578-589.
[8] LU G, ZHANG L, JIN M, et al.Entity alignment via knowledge embedding and type matching constraints for knowledge graph inference[J].Journal of Ambient Intelligence and Humanized Computing,2021: 1-11.
[9] ZHU H, XIE R, LIU Z, et al.Iterative Entity alignment via joint knowledge embeddings[C]//Proceedings of the International Joint Conference on Artificial Intelligence,2017: 4258-4264.
[10] BORDES A, USUNIER N, GARCIA DURANA, et al.Translating embeddings for modeling multi-relational data[C]//Proceedings of the Advances in Neural Information Processing Systems,2013: 2787-2795.
[11] LI C, CAO Y, HOU L, et al.Semi-supervised entity alignment via joint knowledge embedding model and cross-graph model[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing,2019: 2723-2732.
[12] SUN Z, WANG C, HU W, et al.Knowledge graph alignment network with gated multi-hop neighborhood aggregation[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2020, 34(01): 222-229.
[13] CHEN W, CHEN X, XIONG S. Global entity alignment with gated latent space neighborhood aggregation[C]//Proceedings of the China National Conference on Chinese Computational Linguistics,2021: 371-384.
[14] CAO Y, LIU Z, LI C, et al. Multi-channel graph neural network for entity alignment[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,2019: 1452-1461.
[15] WANG Z,LV Q, LAN X, et al. Cross-lingual knowledge graph alignment via graph convolutional networks[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing,2018: 349-357.
[16] 宋文欣. 面向医疗领域的实体对齐研究[D]. 哈尔滨: 哈尔滨工业大学硕士学位论文,2018.
[17] 蔡娇. 基于遗传病领域的实体对齐研究[D]. 苏州: 苏州大学硕士学位论文,2020.
[18] LAN Y, HE S, LIU K, et al.Path-based knowledge reasoning with textual semantic information for medical knowledge graph completion[J].BMC Medical Informatics Decis Mak,2021, 21-S(9): 335.
[19] CHEN M, TIAN Y, YANG M, et al.Multilingual knowledge graph embeddings for cross-lingual knowledge alignment[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence,2017: 1511-1517.
[20] SUN Z, HU W, LI C.Cross-lingual entity alignment via joint attribute-preserving embedding[C]//Proceedings of the International Semantic Web Conference,2017: 628-644.

基金

国家自然科学基金(62076048);大连市科技创新基金(2020JJ26GX035)
PDF(3494 KB)

681

Accesses

0

Citation

Detail

段落导航
相关文章

/