现存关于谣言检测的研究方法要么只关注谣言在社交媒体上传播的时间流特征,要么仅关注传播结构特征,并且使用了大量的辅助信息。实际上,谣言传播的时间流和传播结构特征均有助于提升谣言检测模型的性能,并且能够形成互补作用。与此同时,源用户的自我描述相比于其他辅助信息更为重要,并且源推文的语义信息在整个会话线程中起到了关键作用。为解决上述问题,该文提出了一个新颖的谣言检测模型TPSS。该模型融合了时间流和传播结构特征。同时,仅采用源用户的自我描述作为辅助信息,并且提出了一种协同注意力机制来增强源推文的作用。该机制基于源推文特征来增强时间流特征和传播结构特征。在Twitter15、Twitter16和PHEME数据集上的实验结果表明TPSS优于基准系统。
Abstract
Existing methods for the rumor detection(RD) considered either only temporal flow or propagation structure in social media, and used numerous auxiliary information. Actually, both the temporal flow and propagation structure are helpful to RD and can complement each other. Moreover, the self-description of source user is more important than other auxiliary information and semantic information in source post. To address the above issues, this paper proposes a novel RD model named TPSS, which integrates the temporal flow based method and the propagation structure based method. Moreover, it only employs the self-description of source user as auxiliary feature and proposes a co-attention mechanism to enhance temporal flow and propagation structure based source post. The experimental results on Twitter15, Twitter16 and PHEME show that TPSS outperforms several state-of-the-art baselines.
关键词
谣言检测 /
时间流特征 /
传播结构 /
增强机制
{{custom_keyword}} /
Key words
rumor detection /
temporal flow /
propagation structure /
enhancement mechanism
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] SHARMA K, QIAN F, JIANG H, et al. Combating fake news: A survey on identification and mitigation techniques[J]. ACM Transactions on Intelligent Systems and Technology, 2019, 10(3): 1-21.
[2] MA J, GAO W, MITRA P, et al. Detecting rumors from microblogs with recurrent neural networks[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence, 2016: 3818-3824.
[3] KHOO L, CHIEU H, QIAN Z, et al. Interpretable rumor detection in microblogs by attending to user interactions[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence, 2020: 8783-8790.
[4] DONG S, QIAN Z, LI P, et al. Rumor detection on hierarchical attention network with user and sentiment information[C]//Proceedings of Natural Language Processing and Chinese Computing 9th CCF International Conference, 2020: 366-377.
[5] MA J, GAO W, WONG K. Rumor detection on twitter with tree-structured recursive neural networks[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, 2018: 1980-1989.
[6] LU Y, LI C. GCAN: Graph-aware co-attention networks for explainable fake news detection on social media[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020: 505-514.
[7] LIN H, ZHANG X, FU X. A graph convolutional encoder and decoder for rumor detection[C]//Proceedings of the 7th IEEE International Conference on Data Science and Advanced Analytics, 2020: 300-306.
[8] GUO H, CAO J, ZHANG Y, et al. Rumor detection with hierarchical social attention network[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management, 2018: 943-951.
[9] LIN X, LIAO X, XU T, et al. Rumor detection with hierarchical recurrent convolutional neural network[C]//Proceedings of Natural Language Processing and Chinese Computing 8th CCF International Conference, 2019: 338-348.
[10] BIAN T, XIAO X, XU T, et al. Rumor detection on social media with bi-directional graph convolutional networks[C]//Proceedings of 34th AAAI Conference on Artificial Intelligence, 2020: 549-556.
[11] KIPF T, WELLING M. Semi-supervised classification with graph convolutional networks[C]//Proceedings of the 5th International Conference on Learning Representations, 2017.
[12] CASTILLO C, MENDOZA M, POBLETE B. Information on twitter[C]//Proceedings of the 20th International Conference on World Wide Web, 2011: 675-684.
[13] YANG F, LIU Q, YU X, et al. Automatic detection of rumor on sina weibo[C]//Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics, MDS'12, NY, USA, 2012.
[14] KWON S, CHA M, JUNG K, et al. Prominent features of rumor propagation in online social media[C]//Proceedings of the 13th International Conference on Data Mining, 2013: 1103-1108.
[15] KOCHKINA E, LIAKATA M, ZUBIAGA A. All-in-one: Multi-task learning for rumour verification[C]//Proceedings of the 27th International Conference on Computational Linguistics, 2018: 3402-3413.
[16] ZHAO Z, RESNICK P, MEI Q. Enquiring minds: Early detection of rumors in social media from enquiry posts[C]//Proceedings of the 24th International Conference on World Wide Web, 2015: 1395-1405.
[17] MA J, GAO W, WONG K. Detect rumors in microblog posts using propagation structure via kernel learning[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, 2017: 708-717.
[18] CHEN T, LI X, YIN H, et al. Call attention to rumors: Deep attention based recurrent neural networks for early rumor detection[G]//PAKDD, LANAI 11154. 2018: 40-52.
[19] YU F, LIU Q, WU S, et al. A convolutional approach for misinformation identification[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence, 2017: 3901-3907.
[20] LIU Y, WU Y. Early detection of fake news on social media through propagation path classification with recurrent and convolutional networks[C]//Proceedings of the 32th AAAI Conference on Artificial Intelligence, 2018: 354-361.
[21] VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks[C]//Proceedings of the 6th International Conference on Learning Representations, 2018.
[22] MA J, GAO W, WEI Z, et al. Detect rumors using time series of social context information on microblogging websites [C]//Proceedings of the 24th ACM International Conference on Information and Knowledge Management, 2015: 1751-1754.
[23] CONFIRTI C, BERNDT J, PILEHVAR M, et al. Will-they-won't-they: A very large dataset for stance detection on twitter[C]//Proceedings of the 58th annual Meeting of the Association for Computational Linguistics, 2020: 1715-1724.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金(61836007,62006167);江苏省高等优势学科建设工程资助项目
{{custom_fund}}