[1] KHETAN A, KARNIN Z. schuBERT: Optimizing elements of BERT[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020: 2807-2818.
[2] KENTON J D M W C,TOUTANOVA L K. BERT: Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of NAACL-HLT, 2019: 4171-4186.
[3] RADFORD A, WU J, CHILD R, et al. Language models are unsupervised multitask learners[J].OpenAI Blog, 2019, 1(8): 9-10.
[4] KAPLAN J,MCCANDLISH S, HENIGHAN T, et al. Scaling laws for neural language models[C]//Proceedings of ACL, 2020: 1-30.
[5] BROWN T, MANN B, RYDER N, et al. Language models are few-shot learners[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems, 2020, 33: 1877-1901.
[6] NARANG S, CHOWDHERY A. Pathways language model (palm): Scaling to 540 billion parameters for breakthrough performance[J]. arXiv Preprine arXij: 2204.02311, 2022.
[7] XIE S M, RAGHUNATHAN A, LIANG P, et al. An explanation of in-context learning as implicit Bayesian inference[C]//Proceedings of ICLR, 2022: 1-31.
[8] OUYANG L, WU J, JIANG X, et al. Training language models to follow instructions with human feedback[C]//Proceedings of the 36th International Conference on Neural Information Processing Systems, 2022, 35: 27730-27744.
[9] ACHIAM J, ADLER S, AGARWAL S, et al. GPT-4 technical report[J]. arXiv preprint arXiv: 2303.08774,2023.
[10] LUO Z, XU C, ZHAO P, et al.Wizard Coder: Empowering code large language models with evol-instruct[C]//Proceedings of the 12th International Conference on Learning Representations, 2023: 1-13.
[11] TOUVRON H, MARTIN L, STONE K, et al. LLaMA 2: Open foundation and fine-tuned chat models[J]. arXiv Preprint arXiv: 2307.09288,2023.
[12] HOULSBY N, GIURGIU A, JASTRZEBSKI S, et al. Parameter-efficient transfer learning for NLP[C]//Proceedings of the International Conference on Machine Learning. PMLR, 2019: 2790-2799.
[13] LI X L, LIANG P. Prefix-tuning: Optimizing continuous prompts for generation[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, 2021: 4582-4597.
[14] LESTER B, AL-RFOU R, CONSTANT N. The power of scale for parameter-efficient prompt tuning[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2021: 3045-3059.
[15] HU E J, WALLIS P, ALLEN ZHU Z, et al.LoRA: low-rank adaptation of large language models[C]//Proceedings of the International Conference on Learning Representations, 2021: 1-16.
[16] ZHANG S, ZHANG X, WANG H, et al. Multi-scale attentive interaction networks for Chinese medical question answer selection[J]. IEEE Access, 2018, 6: 74061-74071.
[17] HE J, FU M,TU M. Applying deep matching networks to Chinese medical question answering: A study and a dataset[J]. BMC Medical Informatics and Decision Making, 2019, 19: 91-100.
[18] LI Y, ZHANG Y, ZHAO Z, et al. CSL: A large-scale Chinese scientific literature dataset[C]//Proceedings of the 29th International Conference on Computational Linguistics, 2022: 3917-3923.
[19] Github. Chinese alpaca dataset[EB/OL]. GitHub, https://github.com/hikariming/alpaca_chinese_dataset[2024-05-30].
[20] Github. MNBVC: Massive never-ending BT vast Chinese corpus[EB/OL]. https://github.com/esbatmop/MNBVC[2024-05-30].
[21] ZHU Q, HUANG K, ZHANG Z, et al.Crosswoz: A large-scale Chinese cross-domain task-oriented dialogue dataset[J]. Transactions of the Association for Computational Linguistics, 2020, 8: 281-295.
[22] ZHOU H, ZHENG C, HUANG K, et al.KdConv: A Chinese multi-domain dialogue dataset towards multi-turn knowledge-driven conversation[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020: 7098-7108.
[23] WANG Y,KORDI Y, MISHRA S, et al. Self-Instruct: Aligning language models with self-generated instructions[C]//Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics, 2023: 13484-13508.
[24] PENG B, LI C, HE P, et al. Instruction tuning with GPT-4[J]. arxiv Preprint arxiv: 2304.03277,2023.
[25] SUN Z, SHEN Y, ZHOU Q, et al. Principle-driven self-alignment of language models from scratch with minimal human supervision[C]//Proceedings of the 37th International Conference on Neural Information Processing Systems, 2024: 2511-2565.
[26] ZHANG X, YANG Q. Self-QA: Unsupervised knowledge guided language model alignment[J]. arXiv Preprint arXiv: 2305. 11952, 2023.
[27] 云峰. 《中国民族百科全书》出版[J]. 民族教育研究, 2016, 27(1): 144-156.
[28] 大禹. 《中国服饰大典》出版[J]. 广西民族学院学报(哲学社会科学版), 2000(3): 123-129.
[29] 潘山. 少数民族传统服饰文化研究: 评《中国民族服饰文化研究》[J]. 毛纺科技, 2020, 48(1): 97-98.
[30] 刘玉红. 一本有特色的古代文化史读物: 简评《中国古代文化会要》[J]. 浙江大学学报(人文社会科学版), 2007(5): 86-97.
[31] 刘孝蓉. 文化资本视角下的民族旅游村寨可持续发展研究[D]. 武汉: 中国地质大学硕士学位论文, 2013.
[32] HU E J, WALLIS P, ALLEN ZHU Z, et al.LoRA: Low-rank adaptation of large language models[C]//Proceedings of the International Conference on Learning Representations, 2021: 13484-13508.
[33] ZENG A, LIU X, DU Z, et al. GLM-130B: An open bilingual pre-trained model[C]//Proceedings of ICLR, 2023: 1-19.
[34] YANG A, XIAO B, WANG B, et al.Baichuan 2: Open large-scale language models[J]. ArXiv Preprint ArXiv: 2307.09288,2023.
[35] BAI J, BAI S, CHU Y, et al.Qwen technical report[J]. arxiv Preprint arxiv: 2309,16609,2023.

罗鹤(2001—),共同第一作者,硕士研究生,主要研究领域为自然语言处理、知识图谱、机器阅读理解。
E-mail: 407987622@qq.com

张廷(1980—),共同第一作者,实验师,主要研究领域为自然语言处理、信息抽取、机器阅读理解。
E-mail: tozhangting@126.com

孙媛(1979—),通信作者,教授,主要研究领域为大语言模型。
E-mail: tracy.yuan.sun@gmail.com