[1] FRANCO S, MARCO G, AH C T, et al. The graph neural network model[J]. IEEE Trans on Neural Networks, 2009,20(1): 61-80.
[2] ZHOU J, CUI G, HUANG C, et al. Graph neural networks: A review of methods and applications[J]. AI Open, 2020, 1: 57-81.
[3] ZHANG C, SONG D, HUANG C, et al. Heterogeneous graph neural network[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2019: 793-803.
[4] BI W, XU B, SUN X, et al. Predicting the silent majority on graphs: Knowledge transferable graph neural network[C]//Proceedings of the ACM Web Conference 2023. New York: ACM Press, 2023: 274-285.
[5] MAKSIM K, LAZAROS K G, SHLOMO H, et al. Identification of influential spreaders in complex networks[J]. Nature Physics, 2010(6): 888-893.
[6] AHMAD Z, AMIR S, KEYHAN K. Influence maximization in social networks based on TOPSIS[J]. Expert Systems with Applications, 2018, 108: 96-107.
[7] LIU P, LI L, FANG S, et al. Identifying influential nodes in social networks: A voting approach[J]. Chaos, Solitons & Fractals, 2021, 152, 111309.
[8] THOMAS K, MAX W. Semi-supervised classification with graph convolutional networks[C]//Proceedings of 5th International Conference on Learning Representations, 2016.
[9] PETAR V, GUILLEM C, ARANTXA C, et al. Graph attention networks[C]//Proceedings of 6th International Conference on Learning Representations, 2017.
[10] WILLIAM L H, REX Y, JURE L. Inductive representation learning on large graphs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM Press, 2017: 1025-1035.
[11] LONG M, CAO Y, WANG J, et al. Learning transferable features with deep adaptation networks[C]//Proceedings of the 32nd International Conference on International Conference on Machine Learning. New York: ACM Press, 2015: 97-105.
[12] LONG M, CAO Z, WANG J, et al. Conditional adversarial domain adaptation[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. New York: ACM Press, 2018: 1647-1657.
[13] DAI Q, Wu X M, XIAO J, et al. Graph transfer learning via adversarial domain adaptation with graph convolution[J]. IEEE Trans on Knowledge and Data Engineering, 2023, 35(5): 4908-4922.
[14] SHEN X, PAN S, CHOI K Z, et al. Domain-adaptive message passing graph neural network[J]. Neural Networks, 2023, 164: 439-454.
[15] DAVID K, JON K, VA T. Maximizing the spread of influence through a social network[C]//Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2003: 137-146.
[16] CHEN D, LU L, SHANG M S, et al. Identifying influential nodes in complex networks[J]. Physica A: Statistical Mechanics and its Applications, 2012, 391(4): 1777-1787.
[17] ZHANG X, ZHU J, WANG Q, et al. Identifying influential nodes in complex networks with community structure[J]. Knowledge-Based Systems, 2013, 42: 74-84.
[18] QIU J, TANG J, MA H, et al. DeepInf: Social influence prediction with deep learning[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM Press, 2018: 2110-2119.
[19] KOU J, JIA P, LIU J. et al. Identify influential nodes in social networks with graph multi-head attention regression model[J]. Neurocomputing, 2023, 530: 23-36.
[20] LI W, HU Y, JINAG C, et al. ABEM: An adaptive agent-based evolutionary approach for influence maximization in dynamic social networks[J]. Applied Soft Computing, 2023, 136: 110062.
[21] 刘小洋,唐婷,何道兵. 融合社交网络用户自身属性的信息传播数学建模与舆情演化分析[J].中文信息学报, 2019, 33(9): 115-122.
[22] 张陶, 于炯, 廖彬, 等. 基于图嵌入与支持向量机的社交网络节点分类方法[J]. 计算机应用研究, 2021, 38(9): 2646-2650,2661.
[23] BENEDEK R, CARL A, RIK S, et al. Multi-scale attributed node embedding[J]. Journal of Complex Networks, 2021, 9(1): 1-22.
[24] OLEG P, DENIS K, MICHAEL D. et al. A critical look at the evaluation of GNNs under heterophily: Are we really making progress?[C]//Proceedings of 12th International Conference on Learning Representations, 2023.
[25] XU K, LI C, TIAN Y, et al. Representation learning on graphs with jumping knowledge networks[C]//Proceedings of the 35th International Conference on Machine Learning, 2018: 5453-5462.
[26] JOHANNES G, ALEKSANDAR B, STEHPHAN G. Predict then propagate: Graph neural networks meet personalized pagerank[C]//Proceedings of 7th International Conference on Learning Representations, 2018.
[27] SHAKED B, URI A, ERAN Y. How attentive are graph attention networks?[C]//Proceedings of 10th International Conference on Learning Representations, 2021.[28] LIU M, GAO H, JI S. Towards deeper graph neural networks[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2020: 338-348.
[29] CHEN M, WEI Z, HUANG Z, et al. Simple and deep graph convolutional networks[C]//Proceedings of the 37th International Conference on Machine Learning. New York: ACM Press, 2020: 1725-1735.
[30] SONG Y, WANG D. Learning on graphs with out-of-distribution nodes[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: Press, 2022: 1635-1645.

曾志林(1997—),硕士研究生,主要研究领域为知识图谱和图神经网络。
E-mail: 2530177092@qq.com

张超群(1974—),通信作者,博士,副教授,硕士生导师,主要研究领域为知识图谱、计算智能和大数据技术。
E-mail: chaozi_0771@163.com

吴国富(1965—),博士,副教授,硕士生导师,主要研究领域为中国南方民族历史文化、人类学理论与方法。
E-mail: guofuwu@126.com