张仰森,郭 江. 动态自适应加权的多分类器融合词义消歧模型[J]. 中文信息学报, 2012, 26(1): 3-9.
ZHANG Yangsen,GUO Jiang. Word Sense Disambiguation Based on Ensembled Classifier with Dynamic Weight Adaptation. , 2012, 26(1): 3-9.
动态自适应加权的多分类器融合词义消歧模型
张仰森,郭 江
北京信息科技大学 智能信息处理研究所,北京 100192
Word Sense Disambiguation Based on Ensembled Classifier with Dynamic Weight Adaptation
ZHANG Yangsen,GUO Jiang
Institute of Intelligence Information Processing, Beijing information Science and Technology University,Beijing 100192, China
Abstract:Word Sense Disambiguation (WSD) has been a hot but difficult issue of natural language processing. Ensemble method is considered as one of the four major trends in machine learning research. After a survey of machine learning methods applied in Chinese word sense disambiguation,we introduce the ensembled classifier in the pattern recognition into this issue and propose a classifier ensembled by dynamic weight adaptation. Experimental results show that the proposed classifier has improved the Chinese WDS accuracy significantly. Key wordsword sense disambiguation; classifier; ensembled classifier; context features
[1] Thomas G. Dietterich. Machine learning research: Four current directions[J]. AI Magazine, 1997, 18(4): 97-136. [2] 吴云芳,王淼,金澎,等. 多分类器集成的汉语词义消歧研究[J]. 计算机研究与发展,2008,45(8): 1354-1361. [3] 全昌勤,何婷婷,姬东鸿,等. 基于多分类器决策的词义消歧方法[J].计算机研究与发展,2006,43(5): 933-939. [4] Latinne P, Debeir O, Decaestecker C. Combining Different Methods and Numbers of Weak Decision Trees[J]. Pattern Analysis & Applications, 2002, 5(2): 201-209. [5] 张仰森, 郭江. 四种统计词义消歧模型的分析与比较.北京信息科技大学学报, 2011, 26(2): 13-18. [6] Kilgarriff A, Rosenzweig J. Framework and results for English SenSeval[J]. Computers and the Humanities 34: 15-48, 2000. [7] Xiaojie Wang, Yuji Matsumoto. Trajectory based word sense disambiguation [C/OL]//COLING 2004: Proceedings of the 20th International Conference on Computational Linguistics. http://aclweb.org/anthology/C/C04/C04-1130.pdf.