彭泽环,孙 乐,韩先培,石 贝. 基于排序学习的微博用户推荐[J]. 中文信息学报, 2013, 27(4): 96-103.
PENG Zehuan, SUN Le, HAN Xianpei, SHI Bei. Micro-blog User Recommendation Using Learning to Rank. , 2013, 27(4): 96-103.
基于排序学习的微博用户推荐
彭泽环,孙 乐,韩先培,石 贝
中国科学院 软件研究所 基础软件中心,北京 100190
Micro-blog User Recommendation Using Learning to Rank
PENG Zehuan, SUN Le, HAN Xianpei, SHI Bei
NFS, Institute of Software Technology, Chinese Academy of Sciences, Beijing 100190, China
Abstract:This paper summarized four types of recommendation-related user information from micro-blog systemthe user content(UC), the personal information(PI), the interaction(IA) and the social topological information(ST). Based on the four types of information, a user recommendation framework using learning-to-rank technology is built in the paper. Experiment results show(1) using several features to recommend usually get a better result than using a single feature; (2) recommendation performance based on UC, PI, IA respectively is better than that based on UC. Key wordslearning to rank; user recommendation; micro-blog.
[1] Zhou T, Ma H, Lyu, M., King, I. UserRec: A User Recommendation Framework in Social Tagging Systems[C]//Proceedings of the 24th AAAI Conference on Artificial Intelligence, 2010: 1486-1491. [2] Jilin Chen, Werner Geyer, Casey Dugan. Make new friends, but keep the old: recommending people on social networking sites[C]//Proceedings of CHI11: Proceedings of the 27th international conference on human factors in computing systems ACM New York, 2009. [3] Hiroyuki Koga, Tadahiro Taniguchi. Developing a User Recommendation Engine on Twitter Using Estimated Latent Topics[C]//Proceedings of HCI (1) 2011: 461-470. [4] Geyer W, Dugan C, Millen D, et al. Recommending topics for self-descriptions in online user profiles[C]//Proceedings of RecSys08, 2008: 59-66. [5] Sinha R, Swearingen K. Comparing recommendations made by online systems and friends[C]//Proceedings of DELOS-NSF Workshop on Personalization and Recommender Systems in Digital Libraries. 2001. [6] Guy I, Zwerdling N, Carmel D, et al. Personalized recommendation of social software items based on social relations[C]//Proceedings of RecSys, 2009: 53-60. [7] TY Liu. Learning to Rank for Information Retrieval[J]. Foundations and Trends in Information Retrieval, 2009. [8] K Dindia and D Canary. Definitions and Theoretical Perspectives on Maintaining Relationships. Journal of Social and Personal Relationships[J], 1993, 10(2):163-173. [9] Malone T, Grant K, Turbak F, et al. Intelligent information sharing systems[J]. Communications of the ACM , 1987, 30(5): 390-402. [10] J Hu, B Wang, Y Liu. Personalized Tag Recommendation Using Social Contacts[C]//Proceedings of SRS Workshops, 2011. [11] Ralf Herbrich,Thore Graepel, and Klaus Obermayer. Large Margin rank boundaries for ordinal regression[J]. MIT Press, Cambridge, MA, 2000.