Abstract:Functional words play an important role in modern Chinese words, and constitute the syntactic means of Chinese with the word order, so functional words have an important influence on the syntactic analysis. Dependency parsing is a hotspot of research in the field of natural language processing. In order to improve the recognition effect of dependence relation, the usages of functional words are applied to the recognition process of dependence relation in this paper. Through the study of functional words usages, as well as the analysis of dependence relation in the dependency parsing, it found that the coordination relation has close connection with conjunction. And then, the conjunction usages are considered in the recognition process of coordination relation to improve the recognition performance. The experimental results show that, through considering the conjunction usages, the LAS and the UAS of coordination relations have increased 3.43% and 2.29% respectively. Key wordsfunctional words usages; dependency parsing; coordination relations
[1] 宗成庆. 统计自然语言处理[M]. 北京: 清华大学出版社,2008. [2] 董振东,董强,郝长伶. 下一站在哪里[J].中文信息学报,2011,25(6): 3-11. [3] Tesniere L. Elements de syntaxe structurale. Editions Klincksieck. 1959. [4] Ting Liu, Jinshan Ma, Sheng Li. Building a Dependency Treebank for Improving Chinese Parser[J]. Journal of Chinese Language and Computing, 16(4):207-224. [5] Wanxiang Che, Zhenghua Li, Ting Liu. LTP: A Chinese Language Technology Platform[C]//Proceedings of the Coling 2010: 13-16. [6] Ryan McDonald, Koby Crammer, Fernando Pereira. Online Large-Margin Training of Dependency Parsers[C]//Proceedings of Association for Computational Linguistics (ACL). 2005: 91-98. [7] Ryan McDonald, Fernando Pereira. Non-projective Dependency Parsing using Spanning Tree Algorithms[C]//Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing (HLT/EMNLP). 2005: 523-530. [8] Ryan McDonald, Fernando Pereira. Online Learning of Approximate Dependency Paring Algorithms[C]//Proceedings of European Association for Computational Linguistics (EACL). 2006: 81-88. [9] 李正华,车万翔,刘挺. 基于柱状搜索的高阶依存句法分析[C]//中国计算机语言学研究前沿进展(2007-2009).烟台: 鲁东大学,2009: 117-122. [10] 孟雷,丁效,秦兵,刘挺. 基于依存句法和短语结构句法结合的金融领域事件元素抽取[C].中国计算机语言学研究前沿进展(2009-2011).洛阳: 中国人民解放军外国语学院,2011: 432-437. [11] 俞士汶,朱学锋,刘云. 现代汉语广义虚词知识库的建设[J]. 汉语语言与计算学报,2003,2(1): 89-98. [12] 昝红英,朱学锋. 面向自然语言处理的汉语虚词研究与广义虚词知识库构建[J]. 当代语言学,2009,11(2): 124-135. [13] 周丽娟. 现代汉语连词用法的自动识别及应用研究[D]. 郑州大学硕士学位论文,2012. [14] 赵怿怡,高松,刘海涛. 基于依存语法的汉语并列结构自动分析研究[C].中国计算机语言学研究前沿进展(2007-2009).烟台: 鲁东大学,2009: 148-153. [15] 李文杰,穗志方. 基于并列结构的概念实例和属性的同步提取方法[C].中国计算机语言学研究前沿进展(2009-2011).洛阳: 中国人民解放军外国语学院,2011: 382-387. [16] 昝红英,周丽娟,张坤丽. 基于用法的现代汉语连词结构短语识别研究[J].中文信息学报,2012,23(6): 72-78. [17] 马金山,基于统计方法的汉语依存句法分析研究[D]. 哈尔滨工业大学博士学位论文,2007.[18] J. Liu, R. Xu, Q. Lu, J.Xu. Explore Chinese Encyclopedic Knowledge to Disambiguate Person Names[C]//Proceedings of The 2nd CIPS-SIGHAN Joint Conference on Chinese Language Processing (CLP-2012). [19] H. T. Ng, J. K. Low. Chinese Part-of-speech Tagging: One-at-a-time or All-at-once? Word-based or Character-based?[C]//Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing (EMNLP 2004):277-284. [20] 时迎超, 王会珍, 肖桐, 等. 面向人名消歧任务的人名识别系统[J]. 中文信息学报,2009,23(3):17-22.