王晓明,王 莉,杨敬宗. 微博信息传播网络的结构属性分析[J]. 中文信息学报, 2014, 28(3): 55-61.
WANG Xiaoming, WANG Li, YANG Jingzong. Research on Microblog Information Diffusion Network Structural Properties. , 2014, 28(3): 55-61.
微博信息传播网络的结构属性分析
王晓明,王 莉,杨敬宗
太原理工大学 计算机科学与技术学院,太原 山西 030024
Research on Microblog Information Diffusion Network Structural Properties
WANG Xiaoming, WANG Li, YANG Jingzong
College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
Abstract:Microblog is widely used nowadays. While its users interaction structure is complex, a novel method is proposed in this paper to analyze the property of microblog information diffusion network. We first give the definition of the information source. Then information diffusion networks for six different topic events are visualized and analyzed. Information diffusion network is modeled as a directed acyclic graph, and three motif structures are defined to present information scattering, information gathering and information transmitting, respectively. According to the Spearman rank correlation coefficient, the distributions of the three motif structures are quite different from each other. As for the information diffusion network evolution, it is dount that the information scattering structure has the largest number at each snapshot.
[1] 程学旗, 沈华伟. 社会信息网络中的社区分析[J]. 中国计算机学会通讯, 2011, 12(7): 12-20. [2] Kim J W, Candan K S, Tatemura J. Efficient overlap and content reuse detection in blogs and online news articles[C]//Proceedings of the 18th international conference on World wide web. ACM, 2009: 81-90. [3] Boyd D, Golder S, Lotan G. Tweet, tweet, retweet: Conversational aspects of retweeting on twitter[C]//System Sciences (HICSS), 2010 43rd Hawaii International Conference on. IEEE, 2010: 1-10. [4] Huberman B A, Romero D M, Wu F. Social networks that matter: Twitter under the microscope[J]. arXiv preprint arXiv:0812.1045, 2008. [5] Yang J, Counts S. Predicting the Speed, Scale, and Range of Information Diffusion in Twitter[J]. ICWSM, 2010, 10: 355-358. [6] Gomez Rodriguez M, Leskovec J, Krause A. Inferring networks of diffusion and influence[C]//Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, 2010: 1019-1028. [7] Nagata K, Shirayama S. Method of analyzing the influence of network structure on information diffusion[J]. Physica A: Statistical Mechanics and its Applications, 2012, 391(14): 3783-3791. [8] 田占伟, 隋玚. 基于复杂网络理论的微博信息传播实证分析[J]. 图书情报工作, 2012, 56(8): 42-46. [9] Cioffi‐Revilla C. Computational social science[J]. Wiley Interdisciplinary Reviews: Computational Statistics, 2010, 2(3): 259-271. [10] 窦炳琳, 李澍淞, 张世永. 基于结构的社会网络分析[J]. 计算机学报, 2012, 35(4): 741-753. [11] 田大芳. 图书情报学期刊互引网络结构分析[J]. 情报杂志, 2009 (6): 48-51. [12] Fruchterman T M J, Reingold E M. Graph drawing by force—directed placement[J]. Software: Practice and experience, 1991, 21(11): 1129-1164. [13] Zar J H. Significance testing of the Spearman rank correlation coefficient[J]. Journal of the American Statistical Association, 1972, 67(339): 578-580.