Semantic Role Labeling Based on TongYiCi CiLin Derived Features
LI Guochen1,2,LV Lei2,WANG Ruibo3,LI Jihong3,LI Ru2
1. Department of Computer Engineering, Taiyuan Institute of Technology, Taiyuan, Shanxi 030008,China;
2. School of Computer and Information Technology, Shanxi University, Taiyuan, Shanxi 030006, China;
3. Computer Center, Shanxi University, Taiyuan, Shanxi 030006, China
Abstract:This paper presents an approach to label the semantic roles automatically by using a lexical resource named Tongyici Cilin, in which a CRFs model is constructed by a series of new features derived from the encoded information of Cilin. Compared with the features of word, part-of-speech and word positions, the proposed method investigates the Cilin features on the corpus of Chinese FrameNet (CFN), developed by Shanxi University to describe semantic knowledge. Experimental results show a significant improvement in the performance after adding the features of Cilin information.
[1] Gildea D, Jurafsky D. Automatic Labeling of Semantic Roles[J]. Computational Linguistics. 2002,28(3): 245-288.
[2] Pradhan S, Hacioglu K, Krugler V, et al. Support vector learning for semantic argument classification[J]. Machine Learning Journal, 2005,60(3):11-39.
[3] Xue N, Palmer M. Calibrating features for semantic role labeling[C]//Proceedings of the EMNLP-2004, 2004: 88-94.
[4] Liu T, Che W X, Li S. Semantic role labeling with maximum entropy classifier[J]. Journal of Software, 2007,18(3):565-573.
[5] 李济洪. 汉语框架语义角色的自动标注技术研究[D]. 山西大学博士学位论文, 2010.
[6] 刘怀军, 车万翔, 刘挺. 中文语义角色标注的特征工程[J]. 中文信息学报, 2007,21(1):75-80.
[7] 李世奇, 赵铁军, 李晗静, 等. 基于特征组合的中文语义角色标注[J]. 软件学报, 2011,22 (2):222-232.
[8] Sun H, Jurafsky D. Shallow semantic parsing of Chinese[C]//Proceedings of the NAACL 2004, Boston, USA, 2004: 249-256.
[9] 刘挺, 车万翔, 李生. 基于最大熵分类器的语义角色标注[J].软件学报,2007,18(3):565-573.
[10] 李济洪, 王瑞波, 王蔚林, 等. 汉语框架语义角色的自动标注[J]. Journal of Software, 2010,21(4):597-611.
[11] Lafferty J, McCallum A, Pereira F. Conditional random fields: probabilistic models for segmenting and labeling sequence data[C]//Proceedings of the ICML-01, 2001:282-289.
[12] Wang Y, Wang R B, Jia H C, et al. Blocked 3×2 cross-validated t-test for comparing supervised classification learning algorithms[C]//Proceedings of the Submitted to Neural Computation. 2013.