Subjective Sentence Recognition Based on Hidden Markov Model
LIU Peiyu1, 2, XUN Jing2, FEI Shaodong2, ZHU Zhenfang3
1. School of Information Engineering, Shandong Yingcai University, Jinan, Shandong 250104, China; 2. School of Information Science and Engineering, Shandong Normal University, Jinan, Shandong 250014, China; 3. School of Information Science and Electric Engineering, Shandong Jiaotong University, Jinan, Shandong 250357, China
Abstract:The current subjective and objective text classification methods are mainly based on statistical model over the feature lexicon, which didn’t take into account the syntax and semantic relationships between features. The paper proposes a Chinese subjective sentence recognition based on Hidden Markov Model. In this method, seven kinds of subjective and objective features for classification are extracted tagged among each sentence by HMM. The subjective sentences are decided by the importance of features and syntactic structure of sentences. The method is examined in the task of COAE2014 for its effeiciency.
[1] 徐琳宏, 林鸿飞, 杨志豪. 基于语义理解的文本倾向性识别机制[J]. 中文信息学报, 2007, 21(1): 96-100. [2] 李纲, 程洋洋, 寇广增. 句子情感分析及其关键问题[J]. 图书情报工作, 2010, 54(11): 104-107. [3] 徐军, 丁宇新, 王晓龙. 使用机器学习方法进行新闻的情感自动分类[J]. 中文信息学报,2007,21(6): 95-100. [4] 娄德成, 姚天叻. 汉语语句主题语义倾向分析方法的研究[J]. 中文信息学报,2007,21(5):73-79. [5] Bruce R F, Wiebe J M. Recognizing subjectivity: a case study in manual tagging[J]. Natural Language Engineering, 1999, 5(2): 187-205. [6] Riloff E, Wiebe J, Wilson T. Learning subjective nouns using extraction pattern bootstrapping[C]//Proceedings of the 7th Conference on Natural Language Learning at HLT-NAACL 2003-Volume 4. Association for Computational Linguistics, 2003: 25-32. [7] Hatzivassiloglou V, Wiebe J M. Effects of adjective orientation and gradability on sentence subjectivity[C]//Proceedings of the 18th Conference on Computational Linguistics-Volume 1. Association for Computational Linguistics, 2000: 299-305. [8] Riloff E, Wiebe J. Learning extraction patterns for subjective expressions[C]//Proceedings of the 2003 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 2003: 105-112. [9] Kamal A. Subjectivity Classification using Machine Learning Techniques for Mining Feature-Opinion Pairs from Web Opinion Sources[J]. International Journal of Computer Science Issues (IJCSI), 2013, 10(5). [10] 姚天昉, 彭思崴. 汉语主客观文本分类方法的研究[C]//第三届全国信息检索与内容安全学术会议论文集. 2007. [11] 叶强, 张紫琼, 罗振雄. 面向互联网评论情感分析的中文主观性自动判别方法研究[J]. 信息系统学报,2007,1(1):79-91. [12] 林慧恩, 林世平. 中文情感倾向分析中主观句子抽取方法的研究[C]//全国第 20 届计算机技术与应用学术会议(CACIS·2009) 暨全国第1届安全关键技术与应用学术会议论文集 (上册). 广西 南宁. 2009. [13] Yang Yiming, Pedersen JO. A comparative study on feature selection in text categorization[C]//Proceedings of 14th Conference on Machine Learning. Nashville: Morgan Kaufmann Publishers, 1997: 414-420. [14] 郭叶. 中文句子情感倾向分析[D]. 北京邮电大学, 2010. [15] 杨健, 汪海航. 基于隐马尔可夫模型的文本分类算法[J]. 计算机应用, 2010 (9): 2348-2350. [16] 朱颖. 基于 HMM 的汉语词性标注及其改进[D]. 太原理工大学, 2011.