情感词典构建综述

梅莉莉,黄河燕,周新宇,毛先领

PDF(1347 KB)
PDF(1347 KB)
中文信息学报 ›› 2016, Vol. 30 ›› Issue (5) : 19-27.
综述

情感词典构建综述

  • 梅莉莉,黄河燕,周新宇,毛先领
作者信息 +

A Survey on Sentiment Lexicon Construction

  • MEI Lili,HUANG Heyan,ZHOU Xinyu,MAO Xianling
Author information +
History +

摘要

文本情感分析是近年来迅速兴起的一个研究课题,具有显著的研究价值和应用价值。情感词典的构建在情感分析任务中发挥着越来越重要的影响力。该文对情感词典构建的研究进展进行了总结。首先重点介绍了情感词典构建的研究现状,将其归纳为四种方法,即基于启发式规则的方法、基于图的方法、基于词对齐模型的方法以及基于表示学习的方法,并对每种方法进行介绍和分析;然后对一些常见的语料库、词典资源以及评测组织进行介绍;最后,对情感词典的构建进行了总结,并对发展趋势进行了展望。

Abstract

Sentiment analysis is a rapidly developing research topic in recent years, which has great research value and application value. Sentiment lexicon construction plays an increasingly important influence on the task . This paper summarizes the research progress on sentiment lexicon construction. Firstly, four kinds of methods are summarized and analyzed, including the method based on heuristic rules, the method based on graph, the method based on word alignment model and the method based on representation learning. Then, some popular corpus, dictionary resources and evaluation organizations are introduced. Finally, we conclude the topic and provide the development trends of sentiment lexicon construction.

关键词

情感分析 / 情感词典 / 评测 / 语料 / 综述

Key words

sentiment analysis / sentiment lexicon / evaluation / corpus / survey

引用本文

导出引用
梅莉莉,黄河燕,周新宇,毛先领. 情感词典构建综述. 中文信息学报. 2016, 30(5): 19-27
MEI Lili,HUANG Heyan,ZHOU Xinyu,MAO Xianling. A Survey on Sentiment Lexicon Construction. Journal of Chinese Information Processing. 2016, 30(5): 19-27

参考文献

[1] 赵妍妍,秦兵,刘挺.文本情感分析[J]. 软件学报, 2010, 21(8): 1834-1848.
[2] Maite Taboada, Julian Brooke, Milan Tofiloski, et al. Lexicon-based methods for sentiment analysis[J]. Computational linguistics, 2011, 37(2): 267-307.
[3] Songbo Tan, Yuefen Wang, Xueqi Cheng. Combining learn-based and lexicon-based techniques for sentiment detection without using labeled examples[C]//Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval. ACM, 2008: 743-744.
[4] Likun Qiu, Weishi Zhang, Changjian Hu, et al. Selc: a self-supervised model for sentiment classification[C]//Proceedings of the 18th ACM conference on Information and knowledge management(CIKM), ACM, 2009: 929-936.
[5] Prem Melville, Wojciech Gryc, Richard D Lawrence. Sentiment analysis of blogs by combining lexical knowledge with text classification[C]//Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2009: 1275-1284.
[6] Bing Liu, Lei Zhang. A survey of opinion mining and sentiment analysis[M]//Mining text data. Springer US, 2012: 415-463.
[7] Soo-Min Kim, Eduard Hovy. Automatic detection of opinion bearing words and sentences[C]//Companion Volume to the Proceedings of the International Joint Conference on Natural Language Processing (IJCNLP).2005: 61-66.
[8] Soo-Min Kim, Eduard Hovy. Determining the sentiment of opinions[C]//Proceedings of the 20th international conference on Computational Linguistics. Association for Computational Linguistics, 2004: 1367.
[9] 朱嫣岚, 闵锦, 周雅倩, 等. 基于 HowNet 的词汇语义倾向计算[J]. 中文信息学报, 2006, 20(1): 14-20.
[10] 王素格, 李德玉, 魏英杰, 等. 基于同义词的词汇情感倾向判别方法[J]. 中文信息学报, 2009, 23(5): 68-74.
[11] Vasileios Hatzivassiloglou, Kathleen R McKeown. Predicting the semantic orientation of adjectives[C]//Proceedings of the 35th annual meeting of the association for computational linguistics and eighth conference of the european chapter of the association for computational linguistics. Association for Computational Linguistics, 1997: 174-181.
[12] Turney, Peter D, Michael L Littman. Measuring praise and criticism: Inference of semantic orientation from association[J]. ACM Transactions on Information Systems (TOIS), 2003, 21(4): 315-346.
[13] Minqing Hu, Bing Liu. Mining and summarizing customer reviews[C]//Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2004: 168-177.
[14] Hiroshi Kanayama, Tetsuya Nasukawa. Fully automatic lexicon expansion for domain-oriented sentiment analysis[C]//Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 2006: 355-363.
[15] 刘鸿宇, 赵妍妍, 秦兵, 等. 评价对象抽取及其倾向性分析[J]. 中文信息学报, 2010 (1): 84-88.
[16] Guang Qiu, Bing Liu, Jiajun Bu, et al. Expanding Domain Sentiment Lexicon through Double Propagation[C]//Prolecdings of the IJCAI.2009, 9: 1199-1204.
[17] Guang Qiu, Bing Liu, Jiajun Bu, et al. Opinion word expansion and target extraction through double propagation[J]. Computational linguistics, 2011, 37(1): 9-27.
[18] Lei Zhang, Bing Liu, Suk Hwan Lim, et al. Extracting and ranking product features in opinion documents[C]//Proceedings of the 23rd international conference on computational linguistics: Posters. Association for Computational Linguistics, 2010: 1462-1470.
[19] Pantelis Agathangelou, Ioannis Katakis, Fotios Kokkoras, et al. Mining Domain-Specific Dictionaries of Opinion Words[M]//Web Information Systems Engineering-WISE 2014. Springer International Publishing, 2014: 47-62.
[20] Danushka Bollegala, David Weir, John Carroll. Cross-domain sentiment classification using a sentiment sensitive thesaurus[J]. Knowledge and Data Engineering, IEEE Transactions on, 2013, 25(8): 1719-1731.
[21] K Sai Vishnu, TApoorva, Deepika Gupta. Learning domain-specific and domain-independent opinion oriented lexicons using multiple domain knowledge[C]//Contemporary Computing (IC3), 2014 Seventh International Conference on. IEEE, 2014: 318-323.
[22] Zhe Qi, Mingchu Li. Mining Domain-Dependent Noun Opinion Words for Sentiment Analysis[M].Multimedia and Ubiquitous Engineering. Springer Berlin Heidelberg, 2014: 165-171.
[23] Jaap Kamps, Maarten Marx, Robert J Mokken, et al. Using wordnet to measure semantic orientations of adjectives[C]//Proceedings of the Fourth international Conference on Language Resources and Evaluation.ELRA,2004,1115-1118.
[24] Hiroya Takamura, Takashi Inui, Manabu Okumura. Extracting semantic orientations of words using spin model[C]//Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics. Association for Computational Linguistics, 2005: 133-140.
[25] IliaChetviorkin, Natalia Loukachevitch. Two-Step Model for Sentiment Lexicon Extraction from Twitter Streams[C]//Proceedings of the ACL 2014, 2014: 67.
[26] LeonidVelikovich, Sasha Blair-Goldensohn, Kerry Hannan, et al. The viability of web-derived polarity lexicons[C]//Proceedings of the 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics. 2010: 777-785.
[27] Liheng Xu, Kang Liu, Siwei Lai, et al. Mining Opinion Words and Opinion Targets in a Two-Stage Framework[C]//proceedings of the ACL (1).2013: 1764-1773.
[28] Liheng Xu, Kang Liu, Siwei Lai, et al. Walk and learn: a two-stage approach for opinion words and opinion targets co-extraction[C]//Proceedings of the 22nd international conference on World Wide Web companion. 2013: 95-96.
[29] Shi Feng, Kaisong Song, Daling Wang, et al. A word-emoticon mutual reinforcement ranking model for building sentiment lexicon from massive collection of microblogs[J]. World Wide Web, 2014: 1-19.
[30] Kang Liu,Liheng Xu, Jun Zhao. Opinion target extraction using word-based translation model[C]//Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. 2012: 1346-1356.
[31] Kang Liu,Liheng Xu, Yang Liu, et al. Opinion target extraction using partially-supervised word alignment model[C]//Proceedings of the Twenty-Third international joint conference on Artificial Intelligence. AAAI Press, 2013: 2134-2140.
[32] Kang Liu,Liheng Xu, Jun Zhao. Syntactic Patterns versus Word Alignment: Extracting Opinion Targets from Online Reviews[C]//Proceedings of the ACL 2013: 1754-1763.
[33] Kang Liu,Liheng Xu, Jun Zhao. Extracting opinion targets and opinion words from online reviews with graph co-ranking[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics.1: 314-324.
[34] 王灿辉, 张敏, 马少平. 自然语言处理在信息检索中的应用综述[J]. 中文信息学报, 2007, 21(2): 35-45.
[35] Jeffrey Pennington, RichardSocher, Christopher D Manning. Glove: Global vectors for word representation[C]//Proceedings of the Empiricial Methods in Natural Language Processing (EMNLP 2014), 2014, 12.
[36] TomasMikolov, Kai Chen, Greg Corrado, et al. Efficient estimation of word representations in vector space[C]//Proceedings of International Conference on Learning Repesentations(ICLR),2013.
[37] TomasMikolov, Ilya Sutskever, Kai Chen, et al. Distributed representations of words and phrases and their compositionality[C]//Proceedings of the Advances in Neural Information Processing Systems.2013: 3111-3119.
[38] Quoc V Le, Tomas Mikolov. Distributed representations of sentences and documents[C]//Proceedings of the ICML,2014,14,1188-1196.
[39] Duyu Tang, Furu Wei, Bing Qin, et al. Building large-scale twitter-specific sentiment lexicon: A representation learning approach[C]//Proceedings of COLING.2014: 172-182.
[40] Andrew L Maas, Raymond E Daly, Peter T Pham, et al. Learning word vectors for sentiment analysis[C]//Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics,2011: 142-150.
[41] IgorLabutov, Hod Lipson. Re-embedding words[C]//Proceedings of the ACL 2013: 489-493.
[42] Duyu Tang, Furu Wei, Nan Yang, et al. Learning sentiment-specific word embedding for twitter sentiment classification[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics.2014: 1555-1565.
[43] 徐琳宏, 林鸿飞, 赵晶. 情感语料库的构建和分析[J]. 中文信息学报, 2008, 22(1): 116-122.
[44] Bo Pang, Lillian Lee,Shivakumar Vaithyanathan. Thumbs up?: sentiment classification using machine learning techniques[C]//Proceedings of the ACL-02 conference on Empirical methods in natural language processing-Volume 10. Association for Computational Linguistics, 2002: 79-86.
[45] Janyce Wiebe. Learning subjective adjectives from corpora[C]//Proceedings of the AAAI/IAAI.2000: 735-740.
[46] Janyce Wiebe, Ellen Riloff. Creating subjective and objective sentence classifiers from unannotated texts[M].Computational Linguistics and Intelligent Text Processing. Springer Berlin Heidelberg, 2005: 486-497.
[47] Hongning Wang, Yue Lu, ChengXiang Zhai. Latent aspect rating analysis without aspect keyword supervision[C]//Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2011: 618-626.
[48] 谭松波. 中文情感挖掘语料-ChnSentiCorp [EB/OL], 2010.
[49] Philip J Stone, Dexter CDunphy, Marshall S Smith. The General Inquirer: A Computer Approach to Content Analysis[J] Journal of Regional Science,1966,8(1): 113-116.
[50] 姚天昉, 娄德成. 汉语情感词语义倾向判别的研究[C].中国计算技术与语言问题研究—第七届中文信息处理国际会议论文集.2007.
[51] 姚天昉, 程希文, 徐飞玉, 等. 文本意见挖掘综述[J]. 中文信息学报, 2008, 22(3): 71-80.
[52] 张俊林, 黄瑞红, 孙乐. 亚洲语言信息检索评测会议 NTCIR 介绍[J]. 数字图书馆论坛, 2006 (9): 20-25.
[53] 赵军, 许洪波, 黄萱菁, 等. 中文倾向性分析评测技术报告[C]. 第 1 届中文倾向性分析评测研讨会论文集. 北京, 2008: 1-20.
[54] 黄萱菁, 赵军. 中文文本情感倾向性分析[J]. 中国计算机学会通讯, 2008, 4(2): 41-46.
[55] 黄萱菁, 张奇, 吴苑斌. 文本情感倾向分析[J]. 中文信息学报, 2012, 25(6): 118-126.

基金

国家重点基础研究发展计划(2013CB329303);国家自然科学基金(61402036,61132009)
PDF(1347 KB)

1671

Accesses

0

Citation

Detail

段落导航
相关文章

/