郗亚辉. 产品评论中领域情感词典的构建[J]. 中文信息学报, 2016, 30(5): 136-144.
XI Yahui. Construction of Domain-specific Sentiment Lexicon in Product Reviews. , 2016, 30(5): 136-144.
产品评论中领域情感词典的构建
郗亚辉
河北大学 数学与计算机学院,河北 保定 071002
Construction of Domain-specific Sentiment Lexicon in Product Reviews
XI Yahui
College of Mathematics and Computer Science, HeBei University, Baoding, Hebei 071002,China
Abstract:Domain-specific sentiment lexicon plays an important role in sentiment analysis system. Due to the huge number of the product review in diverse domains , automatic construction of domain-specific sentiment lexicon is a challenging task. This paper proposes a two-phrase automatic construction algorithm of domain-specific sentiment lexicon. In the first phrase, the constrained label propagation algorithm is applied to the construction of base sentiment lexicon by using PMI and contextual constraints. In the second phrase, the domain-specific sentiment words are exacted by the frequency of sentiment conflict, and the domain-specific sentiment lexicon is improved according to the contextual constraints and the product feature modified by the sentiment word. Experiments on diverse real-life datasets show promising results.
[1] M HU, B LIU. Mining and summarizing customer reviews[C]//Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2004: 168-177. [2] A M Popescu, O Etzioni. Extracting product features and opinions from review[C]//Proceedings of the Human Language Technology Conference and the Conference on Empirical Methods in Natural Language Processing, 2005: 339-346. [3] P Stone, D Dunphy, M Smith, et al. The General Inquirer: A Computer Approach to Content Analysis[M]. Cambridge: MIT Press, 1966. [4] S Baccianella, A Esuli, F Sebastian. SENTIWORDNET3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining[C]//Proceedings of the Seventh Conference on International Language Resources and Evaluation, 2010: 2200-2204. [5] 知网, 董振东: http://www.keenage.com/[EB/OL]. [6] L W Ku, H H Chen. Mining Opinions from the Web: Beyond Relevance Retrieval[J]. Journal of the American Society for Information Science and Technology.2007, 58(12): 1838-1850. [7] 徐琳宏,林鸿飞,潘宇,等. 情感词汇本体的构造[J]. 情报学报, 2008, 27(2): 180-185. [8] S Huang, Z Niu, C Shi. Automatic Construction of Domain-specific Sentiment Lexicon Based on Constrained Label Propagation[J]. Knowledge-Based Systems, 2013, 56: 191-200. [9] M HU, B LIU. Mining Opinion Features in Customer Reviews[C]//Proceedings of 9th National Conference on Artificial Intelligence, 2004: 755-760. [10] J Kamps, M Marx, R J Mokken, et al. Using Wordnet to Measure Semantic Orientations of Adjectives[C]//Proceedings of the 4th International Conference on International Language Resources and Evaluation, 2004: 1115-1118. [11] D Rao, D Ravichandran. Semi-supervised Polarity Lexicon Induction[C]//Proceedings of the 12th Conference of the European Association of Computational Linguistics, 2009: 675-682. [12] A Esuli, F Sebastiani. Sentiwordnet: A Publicly Available Lexical Resource for Opinion Mining[C]//Proceedings of the 5th Conference on Language Resources and Evaluation, 2006: 417-422. [13] 朱嫣岚,闵锦,周雅倩,等. 基于HowNet的词汇语义倾向计算[J]. 中文信息学报, 2006, 20(1): 14-20. [14] 路斌,万小军,杨建武,等. 基于同义词词林的词汇褒贬计算[C] . 第七届中文信息处理国际会议论文集. 武汉, 中国: 电子工业出版社, 2007: 17-23. [15] 周咏梅,杨佳能,阳爱民. 面向文本情感分析的中文情感词典构建方法[J]. 山东大学学报(工 学 版), 2013,43(6): 27-33. [16] P D Turney. Thumbs Up or Thumbs Down?: Semantic Orientation Applied to Unsupervised Classification of Reviews[C]//Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, 2002: 417-424. [17] P D Turney, M L Littman. Measuring Praise and Criticism: Inference of Semantic Orientation from Association[J]. ACM Transaction on Information System, 2003, 21(4): 315-346. [18] V Hatzivassiloglou, K R McKeown. Predicting the Semantic Orientation of Adjectives[C]//Proceedings of the 8th Conference on European Chapter of the Association for Computational Ling, 1997: 174-181. [19] H Kanayama, T Nasukawa. Fully Automatic Lexicon Expansion for Domain-Oriented Sentiment Analysis[C]//Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing, 2006: 355-363. [20] X Ding, B Liu. The Utility of Linguistic Rules in Opinion Mining[C]//Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 2007: 811-812. [21] R Y K Lau, C L Lai, P D Bruza, et al. Leveraging Web 2.0 Data for Scalable Semi-supervised Learning of Domain-specific Sentiment Lexicons[C]//Proceedings of the 20th ACM International Conference on Information and Knowledge Management, 2011: 2457-2460. [22] 王素格, 李德玉, 魏英杰, 等. 基于同义词的词汇情感倾向判别方法[J]. 中文信息学报, 2009,23(5): 68-74. [23] 杜伟夫,谭松波,云晓春,等. 一种新的情感词汇语义倾向计算方法[J]. 计算机研究与发展, 2009, 46(10): 1713-1720. [24] G Qiu, B Liu, J Bu et al. Expanding domain sentiment lexicon through double propagation[C]//Proceedings of the 21st International Joint Conference on Artificial Intelligence,2009: 1199-1204. [25] L Zhang, B Liu, S H Lim, et al. Extracting and ranking product features in opinion documents [C]//Proceedings of the 23rd International Conference on Computational Linguistics,2010: 1462-1470. [26] Y Xi. 产品评论特征及观点抽取研究[J]. 情报学报, 2014,33(3): 326-336. [27] F Wang, C Zhang. Label Propagation through Linear Neighborhoods[C]//Proceedings of the 23rd International Conference on Machine Learning, 2006: 985-992.